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Abstract

Use of prescription opioid pain relievers to manage pain increased threefold from 2001-2011,
as medical guidelines were revised to emphasize that appropriate pain management is required
for an acceptable standard of care. However, a concomitant rapid rise in opioid abuse, addiction,
overdose, and death has led to escalating policy efforts to crack down on opioid prescribing. This
paper sheds light on the tradeoffs of public policies that reduce the supply of medical opioids by
investigating their health, labor, and welfare ramifications. I exploit state-level variation in the
introduction of Prescription Drug Monitoring Program (PDMP) laws and make use of several rich
data sources, documenting that PDMPs reduce the distribution of opioids, and achieve key policy
goals by reducing rates of opioid use disorder, and reducing opioid overdose deaths by about 8%.
I also leverage rich individual-level medical claims data and work records to document substantial
costs resulting from these policies, including more missed days of work for injured and disabled
individuals, and substitution towards more-expensive medical care during medical episodes re-
quiring pain management. A rough back-of-the-envelope welfare calculation suggests the welfare
losses and gains from regulation are on the same order of magnitude – approximately $8.2–$10.9
billion per year in increased costs from inpatient and outpatient medical spending plus lost wages,
compared to $4.8-$7.6 billion per year in benefits from lives saved from opioid overdose.
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1 Introduction

Prescription opioid pain relievers are a highly effective medical technology for the general relief of

pain, but they also can be addictive, and their use may lead to dependence, abuse, overdose, and

death. Until the mid-1990s, prescription opioids were utilized primarily for acute pain and pain re-

lated to terminal cancer, but rarely for chronic, non-cancer pain. Fears of abuse meant that even for

acute pain and cancer patients, pain was often undertreated. In the face of concerns that undertreat-

ment of pain was a “serious public health issue” (Federation, 1998), medically indicated use of these

drugs over the past 20 years has increased dramatically, and attitudes have liberalized towards the

use of opioids for chronic non-cancer pain.

However, in recent years, there has been a considerable backlash against the use of opioids, as a

concomitant, and largely unanticipated, rise in adverse events associated with opioid pain relievers

has raised alarm in medical and public health communities (Kolodny et al., 2015).1 As can be seen in

Figure 1, a threefold increase from 2001 to 2011 in Morphine Milligram Equivalent (MME) of opioids

distributed coincided with a threefold increase in drug overdose deaths linked to opioids during that

same time period. Opioid overdose deaths have only continued to rise, and overtook automobile

accidents as a leading cause of death in 2016. Policymakers including the Secretary of Health and

Human Services have declared rising rates of prescription opioid drug abuse an ‘epidemic’ (US De-

partment of Health and Human Services, 2015). These intensifying concerns prompted the Centers

for Disease Control (CDC) to release opioid prescribing guidelines in March 2016, and these guide-

lines endorsed a major shift in practice, recommending a sharp reduction in opioid prescribing for

both acute and chronic pain compared to what was common at that point in time. (Frieden and

Houry, 2016).2

In this paper I exploit state-level variation in the timing of one major category of efforts to crack

down on the distribution of opioids inside the medical care system – the implementation of statewide

Prescription Drug Monitoring Programs (PMPs or PDMPs) – to identify the causal effects of a reduc-

tion in opioid supply on health outcomes, health spending, work output, and death, and attempt

to integrate these results in order to characterize the welfare tradeoffs inherent in regulating these

controlled substances.

PDMPs are state-run databases used to track prescribing and dispensing of controlled prescrip-

1Chronic pain researchers who were influential in the adoption of opioids for the treatment of chronic pain (Portenoy
and Foley, 1986) have later revised their views (Catan and Perez, 2012).

2 Under the guidelines, opioids are not preferred for chronic pain, and there are dosage recommendations if utilized of
50 MME per day (and at most 90 MME per day); opioids for acute pain should be limited to three days in most cases, and at
most seven days. Prior to these guidelines, it was common for opioid prescriptions to exceed these amounts. For example,
in the Marketscan medical claims data used in this paper, 56% of all acute opioid prescriptions exceeded the three-day
recommendation, and 15% of all acute prescriptions exceeded seven days; 19% of all chronic prescriptions exceeded the 50
MME per day recommendation, and 9% of all chronic prescriptions exceeded 90 MME per day.
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tion drugs to patients, and the data collected are accessible by physicians, pharmacists, and some-

times law enforcement officials. By monitoring the behavior of both doctors and patients, PDMPs

aim to reduce undesirable doctor behavior (ranging from overprescribing beyond recommended

guidelines, to extreme cases of “pill mills,” where opioids are prescribed to patients without medical

need), as well as undesirable patient behavior (i.e., “doctor-shopping”). They are intended to increase

physician caution, improve clinical decision-making, and reduce the overall propensity of doctors to

prescribe and refill opioids for pain management (PDMP Center of Excellence, 2014). PDMPs are con-

sidered to be one of the first policy levers for states to employ to reduce opioid-related harms; in 2002,

the DOJ started a grant program to states to support the implementation of state Prescription Drug

Monitoring Programs, and they were recommended in the National Drug Control Strategy starting

in the mid-2000s (White House, 2005). The March 2016 CDC opioid prescribing guidelines recom-

mended that clinicians always consult their PDMP before initiating opioid therapy and periodically

during long-term chronic therapy (Centers for Disease Control and Prevention, 2015).

However, in recent years, efforts to restrict opioid prescribing, ranging from enforcing increas-

ingly rigid PDMP clinician usage rules, to prescription dosage limits set by state legislatures, to the

new CDC prescribing guidelines, have engendered some concern and controversy. For example, in a

comment on the initial draft, the American Medical Association stated that the new CDC guidelines

and supporting discussion were “devoid of a patient-centered view and any real acknowledgement

or empathy of the problems chronic pain patients may face” (Ault, 2015). In 2019, acknowledging the

substantial impact the guidelines have had on restricting access to opioid pain relievers and some

unintended consequences, the CDC released an advisory statement warning about heavy-handed

application of its 2016 guidelines, clarifying they do not support hard dosage limits, or sudden dis-

continuation/“cutting off” of patients. (Centers for Disease Control, 2019a). The American Medical

Association recently argued that the CDC guidelines have increased stigma for pain patients and

resulted in legitimate pain care being denied, and as such should be substantially revised (Madara,

2020).

Underlying this controversy over optimal policy are complex welfare considerations. Early un-

derstanding of the ‘opioid epidemic’ conceptualized it as resulting from diversion and theft of opi-

oids from the medical care system for the purpose of illicit abuse, and emphasized that legitimate

medical use of opioids for pain is safe and effective. A welfare calculation under this scenario would

entail valuing costs and benefits of increased regulation that fall largely on different groups of people

– legitimate pain patients bear the costs, while people at risk of becoming illicit drug users experience

the benefits. Optimal policy would focus on reducing diversion and theft.3

3Early efforts to rein in the negative effects of the expanded use of prescription opioids focused on this channel – shutting
down illicit ‘pill mills’ via DEA busts, preventing pharmacy theft, and reducing the supply of unused pills in medicine
cabinets that might be stolen by friends or family members via drug “take back” programs (Smith, 2013; Kolodny et al.,
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However, recent concerns have shifted to whether opioids are being appropriately used in the

course of medical care. An influential medical literature review published in 2015 by Chou et al.

stated that “accumulating evidence supports the increased risk for serious harms associated with

long-term opioid therapy, including overdose, opioid abuse, fractures, myocardial infarction, and

markers of sexual dysfunction.” The study also noted that because no randomized controlled studies

have been conducted for opioid use that extends past one year, “reliable conclusions about the ef-

fectiveness of long-term opioid therapy for chronic pain are not possible.” As such, efforts to reduce

opioid-related adverse events have shifted towards more directly targeting the pain management

system, and pain patients are seen as most likely to be at-risk. Under this newer understanding, it

is possible that doctors and patients are not jointly and optimally trading off the costs and benefits

of opioid therapy. On the patient side, time inconsistency and present bias or incomplete informa-

tion might lead to an irrational use of and the development of a dependence or addiction to these

drugs. On the doctor side, agency problems with respect to pharmaceutical company perks, in-

surer reimbursement systems, or hospital satisfaction surveys might incentivize over-prescription of

opioids, even as it may be counter to the long-term welfare of many individual patients (Thomas

et al., 2015).4,5 Pharmaceutical manufacturer Purdue Pharma, which makes the opioid pain reliever

OxyContin, pled guilty in 2020 to criminal charges including conspiracy to aid and abet doctors in

dispensing medication “without a legitimate medical purpose” (U.S. Department of Justice, 2020).

This paper makes several contributions to this debate. First, I establish that an important early

policy lever for addressing societal problems brought about by increased opioid use – the implemen-

tation and push towards greater use of state-level Prescription Drug Monitoring Programs – achieved

key policy goals of reducing opioid abuse and overdose deaths. However, I also document, using a

rich data environment comprising medical claims linked to administrative work records for millions

of patients, that there have been unintended consequences with considerable welfare costs from the

reduction in opioid availability that has been the result of these efforts. I find that the reduction in

opioid availability alters the medical practice of pain management, and patients and their doctors

2015; SAMHSA, 2012). PDMP regulations also focused on catching illegitimate pain patients, such as “doctor shoppers”
who visited multiple clinicians in order to obtain drugs for street sale.

4Legislative attention has been focused on both pharmaceutical company perks and hospital patient satisfaction sur-
veys. In 2014 Senators Grassley and Feinstein sent a letter to Centers for Medicare and Medicaid Services complaining that
the use of HCAHPS satisfaction surveys in Value Based Purchasing, which have 3 questions out of 20 on pain control, was
distorting incentives for hospitals and physicians towards over-prescription of pain medications. In 2012, Senator Grassley
requested information from Medicaid which demonstrated that the highest prescribers of certain abusable prescription
drugs were also those receiving large payments from the pharmaceutical companies that make them.

5Insurance limitations on reimbursements, e.g., for physical therapy and mental health, are well known, and physician
responses to recent opioid restrictions have highlighted “access and insurance coverage limitations for non-pharmacologic
treatments” as key concerns when implementing opioid reductions. CMS recently made cuts to the reimbursement struc-
ture for some interventional pain management procedures due to lack of evidence for their efficacy and concerns about
overuse; the American Society of Interventional Pain Physicians responded by stating that “this may end up driving pa-
tients to receive more opiates, drive patients to expensive points of care (the hospital) and have patients [undergo] unnec-
essary spinal surgery, which is much more expensive than the care offered by interventional pain physicians.”
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substitute towards more costly, and possibily inferior, forms of chronic pain management; on net,

episodes of chronic pain grow more expensive to treat. Additionally, I use a predictive machine

learning algorithm to identify a cohort of individuals who are likely to suffer from chronic pain con-

ditions, and find that there is markedly increased missed work under workers’ compensation and

short-term disability, indicating their pain is more poorly managed after these reforms. This suggests

that an increase in pain and a reduction in function has resulted from reduced access to pain manage-

ment with opioids, and that substitution towards alternate pain management has not been sufficient

to fully compensate.

I use these empirical estimates as inputs to a rough welfare calculation, finding that reducing

opioid use results in a tradeoff wherein $8.2–$10.9 billion per year in increased costs from inpatient

and outpatient medical spending plus lost wages are traded off against $4.8-$7.6 billion per year in

benefits from reduced addiction and lives saved from opioid overdose. However, I find evidence that

the groups experiencing benefits from regulation are not the same as groups experiencing harms. I

first exploit the linked claims and work data to show that the individuals with chronic pain who

experience harms, i.e. loss in work productivity and function, do not appear to be the same cohort

of individuals who see benefits through declines in opioid abuse episodes. I also examine patterns

of benefit and harm demographically across the medical and mortalitity datasets, showing that the

groups being targeted by, and benefiting from, regulation are broadly but not entirely overlapping

demographically. These results are suggestive that social tradeoffs of permissive opioid prescribing

are significant, and a move towards more restrictions in prescribing may have exerted an important

externality on chronic pain patients.

As discussed in Garthwaite (2012), an increasing enthusiasm for comparative and cost effective-

ness research, and in particular a shift towards its use in deciding reimbursement rates and insurance

coverage (e.g., “value based care”) has typically neglected to include important broader nonmedi-

cal and economic benefits of medical technologies, especially labor supply. This is in part due to a

scarcity of evidence on those effects stemming from the fact that it is difficult to identify exogenous

variation in the use of medical technology; as such, few studies have directly estimated the economic

or labor supply benefits of medical technologies or pharmaceuticals. (Exceptions include Garthwaite

(2012), Powell and Seabury (2014), and Berndt et al. (2000).) Pain medications represent a major area

of concern: they were the fourth largest by-volume class of drug sold in the United States in 2018,

and are dispensed to about 55 million unique patients per year, down from about 75 million at peak

levels in 2011-2012 (Aitken, 2013, 2019; Centers for Disease Control, 2019b).

A few recent studies have looked specifically at the relationship between opioids and labor supply

(Park and Powell, 2020; Savych, Neumark and Lea, 2019; Franco, Wagner and Whaley, 2019; Deiana

and Giua, 2018). Identification of the labor supply effects of opioid policies is complicated by the
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interlocking nature of economic factors and the opioid crisis broadly, as has been explored in recent

work about economic correlates with rising “deaths of despair” (Case and Deaton, 2017; Krueger,

2017). Work focusing on illicit opioid abuse such as Park and Powell (2020) tends to find that illicit

opioid availability and higher rates of misuse are associated with reduced labor market supply. The

focus of this study is complementary but different. By borrowing several useful supervised and un-

supervised machine learning methods and leveraging my very rich data environment to identify and

characterize the changing experiences of chronic pain patients under increasingly restrictive prescrib-

ing regimes, I am able to shed light on the internal as well as external tradeoffs between economic

and medical costs and benefits for this important and widely-used medical technology.

Additionally, I contribute to the medical and public health literature on the health, wellbeing,

and life outcomes of pain patients, and whether they are improved or hindered by long-term use of

opioids, with an identification strategy that utilizes plausibly exogenous variation in individual opi-

oid supply to study individual outcomes. Because long-term randomized controlled trials of greater

than one year have not been conducted on the use of opioids for chronic pain – and almost all studies

on opioids have only lasted between 3 and 16 weeks – studies in this literature, detailed below in

Section 2, have been observational or used matched-control techniques, and have been hampered by

endogenous selection into chronic opioid therapy which is likely to be correlated with pain, func-

tionality, health, work output, and other life outcomes. My results are generally of the opposite sign

to what is often found in these studies. For example, studies of workers’ compensation insurance

claims find that the utilization of opioid therapy is correlated with more missed days of work after

an injury.6 This concern likely arises from a positive correlation between length of opioid therapy

and days missed driven by a common confounder, severity of the injury; by studying a plausibly

exogenous reduction in opioid supply, I show that there is actually a negative relationship between

use of opioids and days missed in workers’ compensation, and that restrictions in opioid prescribing

to injured workers increases their time out of work.

The paper proceeds as follows. Section 2 provides background on the medical literature on opi-

oids, and documents the changing landscape of opioid use over the past 20 years. Section 3 describes

my data, and Section 4 describes the empirical framework. Section 5 presents results on the policy

successes of PDMPs, while Section 6 presents results on the unintended consequences of PDMPs.

Finally, Section 7 integrates these results into a back-of-the-envelope welfare calculation. Section 8

concludes.
6See, for example, NY Times, Pain Pills Add Cost and Delays to Job Injuries: “Workers who received high doses of opioid

painkillers to treat injuries like back strain stayed out of work three times longer than those with similar injuries who
took lower doses, a 2008 study of claims by the California Workers’ Compensation Institute found. When medical care
and disability payments are combined, the cost of a workplace injury is nine times higher when a strong narcotic like
OxyContin is used than when a narcotic is not used, according to a 2010 analysis by Accident Fund Holdings, an insurer
that operates in 18 states.”
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2 Background

The first research to suggest that opioids could be used successfully and safely in the management

of chronic, non-cancer pain, without generating significant problems with addiction or abuse, was a

non-randomized study of 38 patients who were on opioid therapy for as long as 7 years, published

by Portenoy et al. in 1986. Several similar follow-up studies, in combination with a prominent article

entitled “The Tragedy of Needless Pain” (Melzack, 1990), which stated that “contrary to popular

belief, morphine taken solely to control pain is not addictive,” led to a shifting perception among

doctors during the 1990s that pain was widely undertreated and that opioids could provide effective

relief. A small number of randomized clinical trials on the effectiveness of opioids for chronic non-

cancer pain were conducted during this period, indicating opioids could be used for chronic pain,

but they answered a narrow question – over a period of 3-16 weeks, are prescription opioids effective

at reducing chronic pain and improving function, compared to a placebo drug (Furlan et al., 2006)?

Guidelines and incentives for physicians and hospitals during this period, as well as the overall

regulatory landscape, dramatically shifted towards more-liberal pain management across the board.

In 1995 the FDA approved Oxycontin for the management of moderate to severe pain, specifically

mentioning its use for chronic pain such as back pain. In 1998, The Federation of State Medical Boards

Model Pain Policy was rewritten, stating that “the Board recognizes that controlled substances in-

cluding opioid analgesics may be essential in the treatment of acute pain due to trauma or surgery

and chronic pain, whether due to cancer or non-cancer origins” (Federation, 1998). The policy also

articulated that “inadequate pain control may result from physicians’ lack of knowledge about pain

management or an inadequate understanding of addiction. Fears of investigation or sanction by fed-

eral, state, and local regulatory agencies may also result in inappropriate or inadequate treatment of

chronic pain patients.” This policy was strengthened further in 2004, stating that “the state medical

board will consider inappropriate treatment, including the undertreatment of pain, a departure from

an acceptable standard of practice... and will investigate such allegations” (Federation, 2004).7 Simi-

larly, for hospitals, revised 2001 standards from the Joint Commission on Accreditation of Healthcare

Organizations emphasized “a patient’s right to pain management” (AAACN, 2001), and introduced

the “Pain Scale,” a scale of smiling to frowning faces ranging from 0 (“no hurt”) to 10 (“hurts worst”).

The Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) patient satis-

faction survey, which affects hospital reimbursement rates as of October 2012, includes 3 questions

out of 20 on pain control, such as whether “the hospital staff [did] everything they could to help with

your pain” (Zusman, 2012).

7The policy also explicitly added that “physicians should not fear disciplinary action from the Board for ordering,
prescribing, dispensing, or administering controlled substances, including opioid analgesics, for a legitimate medical pur-
pose.”
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While in the early 2000s medical consensus continued to on-balance support the notion that opi-

oids were under-prescribed and “the medical use of opioids does not create drug addicts, and restric-

tions on this medical use hurt patients” (McQuay, 1999), by the mid-2000s two concerns about the

rapid expansion in the use of opioids had emerged. First, a concomitant and largely unanticipated

sharp rise in opioid abuse, addiction, overdose, and death suggested that the safety of widespread

opioid use had been overstated (Ballantyne, 2006; Catan and Perez, 2012). Although the initial fo-

cus of opioid harm mitigation was on preventing diversion and abuse of opioids by non-medical

abusers (e.g., through stealing drugs from others’ medicine cabinets, pharmacy theft, diversion via

pill mills, etc.) increasing attention has been paid to abuse, “iatrogenic addiction,” and overdose

among medical users (Kolodny et al., 2015; Kaplovitch et al., 2015; Ballantyne, 2012; Chou et al., 2009,

2015). However, attempts to estimate how many cases of opioid use disorder are created via legit-

imate medical use are hampered by the fact that a clear consensus on the definition of problematic

opioid use and abuse among prescribed patients does not exist, and in practice the distinction can

be very blurry (Ballantyne and Shin, 2008; Jones, Paulozzi and Mack, 2014).8 One literature review

(Vowles et al., 2015) found that estimated rates of problematic opioid use across studies are quite

broad, ranging from <1% to 81%.9

Second, the effectiveness of long-term opioid therapy for chronic pain also began to be called into

question. Although there is relative consensus that opioids are effective at managing short- and

medium-term pain (Furlan et al., 2006; Chou et al., 2009; Noble et al., 2010), due to the lack of ran-

domized clinical trials exceeding 16 weeks, observational epidemiological studies are influential as

the best-available evidence on long-term chronic opioid use (usually defined as exceeding 90 days)

(Rosenblum et al., 2008; Ballantyne, 2012; Frieden and Houry, 2016). A 2006 study using rich data

on Danish adults (Eriksen et al., 2006) studied a group of patients who reported chronic pain, uti-

lizing non-opioid users as a control group for opioid users. Self-reported pain, work capacity, and

total medical utilization were compared between the two groups, and opioid users fared worse on

all outcomes. Although the study cautioned that “because of the cross-sectional nature causative re-

lationships cannot be ascertained,” it also concluded that “it is remarkable that opioid treatment of

long-term/chronic non-cancer pain does not seem to fulfil any of the key outcome opioid treatment

goals: pain relief, improved quality of life and improved functional capacity.” A number of other

studies assessing opioid efficacy utilize a similar observational methodology, and find that opioid

use is associated with increased medical expenditure and more missed work on workers’ compensa-

8Nonmedical prescription drug use is most frequently defined as “use without a prescription, or use that occurs simply
for the experience or feeling the drug causes.”

9In the Marketscan medical claims data studied in this paper, 1.1% of enrollees prescribed oxycodone were later ob-
served with a claim relating to opioid use disorder, as defined below. This figure is 0.64% when considering enrollees
prescribed any opioid.
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tion and disability (Braden et al., 2012; Manchikanti et al., 2011; Vogt et al., 2005; Mahmud et al., 2000;

Morris et al., 2015; Sjogren et al., 2010; Franklin et al., 2008; Gross et al., 2009; Volinn, Fargo and Fine,

2009). However, these studies all suffer from major concerns that selection into opioid therapy is en-

dogenous to the severity and unmanageability of pain, as well as correlated with other characteristics

such as poor mental health that might determine outcomes, and hence that the negative association

between opioid therapy and health and work outcomes may not be causal.

A 2008 review of the use of opioids for analgesia summarized the clinical situation as follows:

“The past several decades in the United States have been characterized by attitudes that have shifted

repeatedly in response to clinical and epidemiological observations, and events in the legal and regu-

latory communities. The interface between the legitimate medical use of opioids to provide analgesia

and the phenomena associated with abuse and addiction continues to challenge the clinical commu-

nity, leading to uncertainty about the appropriate role of these drugs in the treatment of pain” (Rosen-

blum et al., 2008). The 2015 review (Chou et al., 2015) was more pointed, stating “the lack of scientific

evidence on effectiveness and harms of long-term opioid therapy for chronic pain is clear and is in

striking contrast to its widespread use for this condition ... Reliable conclusions about the effective-

ness of long-term opioid therapy for chronic pain are not possible due to the paucity of research to

date.”

Continuing uncertainty is reflected in persistent controversy among doctors, pain practitioners,

and public health professionals about the role of opioids in society; some doctors advocate recon-

sideration about whether opioids should be indicated for most chronic pain patients (McCance-Katz

et al., 2012).10 The March 2016 CDC opioid guidelines recommending major changes in opioid pre-

scribing practices relied heavily on the finding of Chou et al. that no evidence exists to support long-

term chronic opioid therapy. In a statement accompanying the guidelines, CDC Director Thomas

Frieden reflected shifting attitudes: “what we want to just make sure is that doctors understand that

starting a patient on an opiate is a momentous decision. The risks are addiction and death, and the

benefits are unproven” (Frieden and Houry, 2016; Bernstein, 2015). Yet the guidelines, and process

surrounding the development of the accompanying evidence review, have also provoked controversy

and concern among doctors and patient advocacy groups (Anson, 2015; McCarberg, 2016; Madara,

2015; Alford, 2016).

The result of this shifting understanding of the most appropriate role of opioids in society has

been a series of regulatory changes that have resulted in a decline since 2011 in total opioids dis-

pensed in the US, as seen in Figure 1. A primary initial policy lever was the introduction of Prescrip-

tion Drug Monitoring Program laws at the state level, which are detailed below and which are stud-

10Increasing attention is also being focused on opioid prescribing for acute pain; in 2016 Massachusetts became the first
state to limit initial opioid prescriptions, to a maximum of 7 days.
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ied in this paper.11 Amidst optimism that these policy levers are reducing opioid abuse, overdose,

and death, there have also been increasing reports of difficulty accessing pain medications by chronic

pain patients (Gleason et al., 2014; Hoffman, 2016; Centers for Disease Control, 2019a; Madara, 2020).

This debate over the appropriate societal role of opioid pain relievers in the treatment of pain

remains unresolved, and is the subject of discussion and debate by clinicians, researchers, and poli-

cymakers. A landmark randomized clinical trial of the use of opioids versus non-opioid medications

to treat 240 veterans with chronic back pain or osteoarthritis pain, which notably extended to 12

months, found that the use of opioids did not result in significantly improved pain-related function

compared to non-opioid medications (Krebs et al., 2018). Busse et al. (2018) conduct a meta-analysis

intended to update previous meta-analyses such as Chou et al. (2015), reviewing 96 randomized

clinical trials of opioids for chronic noncancer pain; they find the use of opioids is associated with

a statistically significant reduction in pain and increase in physical functioning, but that the mag-

nitude of the effect is small. Finally, Nadeau, Wu and Lawhern (2021) conduct an analytic review

of the clinical literature, finding substantial but not definitive evidence that opioids are effective in

treating chronic pain; they also highlight the continuing absence of comparative effectiveness studies

that prove effectiveness of non-pharmacologic substitutes. Reflecting these ongoing concerns, the

CDC recently released a commentary clarifying its 2016 Guideline (Dowell, Haegerich and Chou,

2019), encouraging some relaxation of overly-strict interpretations; in 2020 the American Medical

Association released a new statement “welcom[ing] the [2019] clarification,” but calling for the CDC

to further revise its approach, stating that “it is clear that the CDC Guideline has harmed many pa-

tients.... patients suffering from pain increasingly view themselves as collateral damage. A dedicated

effort must be made to undo the damage from the misapplication of the CDC Guideline.”

3 Data

3.1 Drug Enforcement Administration Automated Reports and Consolidated Orders Sys-

tem

Data for this study comes from four main sources. First, I digitize reports from the Drug Enforce-

ment Administration’s Automated Reports and Consolidated Orders System (ARCOS).12 The AR-

COS system tracks the flow of DEA controlled substances from their point of manufacture, through

11Several other regulatory changes have contributed. In 2010, Purdue Pharma switched to a new abuse-deterrent formu-
lation of Oxycontin, intended to provide equivalent pain relief to the old formulation, but prevent street abuse by being
resistant to crushing and snorting. In 2011, the DEA engaged in a series of crackdowns on pill mills, especially in Florida.
In 2013, the FDA blocked the introduction of non-abuse-deterrent generic versions of Oxycontin from entering the market.

12These reports are publicly accessible on the DEA website at https://www.deadiversion.usdoj.gov/arcos/retail_
drug_summary/index.html; I have published the data and a package to process the yearly PDFs on https://github.com/

akilby/arcos.
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commercial distribution channels, to the point of sale/distribution (by hospitals, retail pharmacies,

practitioners, mid-level practitioners, and teaching institutions). The ARCOS reports contain data on

all Schedule II and select Schedule III substance sales at the quarter-state level; in particular, these

reports cover the sale of all major opioid pain relievers broken out by active ingredient (codeine,

fentanyl, hydrocodone, hydromorphone, meperidine, methadone, morphine, and oxycodone).13 An

advantage of this dataset relative to all other data sources on opioid prescribing is that it contains a

census of all U.S. prescribing and thus represents a complete accounting of all opioids available in

the U.S. net of any substitution between sources.14

3.2 Marketscan Commercial Claims and Encounters / Health and Productivity Manage-

ment

Second, I utilize the Truven (now IBM) Marketscan Commercial Claims and Encounters (CCAE) plus

linked Health and Productivity Management (HPM) database from 2005 to 2012. This individual-

level panel dataset is constructed from health insurance claims obtained from large employers, and

has grown from 1,291,067 enrollees in 2005 to 3,964,364 enrollees in 2012.15 Broadly, the individu-

als in a given year of the Marketscan data can be considered to represent the population of work-

ing Americans who have employer-sponsored insurance, or about 59% of the total population. The

CCAE dataset contains rich clinical indicators: detailed prescription claims, clinical utilization, and

expenditures, including diagnoses, procedures, type of provider, etc. Additionally, the CCAE data

is linkable via unique enrollee ID to the HPM databases, which contain administrative workplace

data on absences, short-term disability, long-term disability, and workers’ compensation data. The

median enrollee appears in the dataset for about three years.

Because the Marketscan sample is obtained from large employers, individuals usually move into

and out of the sample in groups based on whether their employer is providing data to Marketscan

for that year. This generates concerns that non-random selection of individuals into and out of the

13Schedule II and III drugs are both defined as having “a currently accepted medical use in treatment in the United
States,” and a “potential for abuse and dependence.” Fentanyl, hydromorphone, meperidine, methadone, morphine, and
oxycodone are Schedule II, while codeine and hydrocodone are Schedule III. Schedule III drugs are distinguished from
Schedule II as less abusable, and less likely to produce physical and psychological dependence. In practice, the distinction
is important because Schedule III drugs are easier to prescribe and obtain: they can be refilled and the prescription can
be called in, while Schedule II drugs cannot. They also have been less of a focus on enforcement by the DEA, leading to
greater practitioner comfort with their use.

14However, the data is also very noisy, and this is likely a significant source of measurement error in my ARCOS analysis.
First, the ARCOS system has some internal inconsistencies. For example, Report 2 contains quarterly drug distribution in
each state in grams, and Report 3 contains quarterly drug distribution in each state in grams per 100k population. Despite the
fact that each quarter-state observation should only differ by a constant (100k population as a divisor), these numbers in
Reports 2 and 3 – which were generated for me simultaneously by the DEA – do not always agree. The ARCOS reports are
also regularly updated and occasionally archived historical reports are re-run (indicated by a new Run Date). This often
changes the dataset slightly as well.

15Overall, 7,131,438 total individuals appear in the database.
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sample could bias my estimates. In order to handle this concern, my baseline empirical specification

will utilize individual-level fixed effects, thus estimating only within-person variation. Results using

individual fixed effects are very similar to results using entry-cohort fixed effects. I explore robustness

concerns relating to the sample and choice of fixed effects in Appendix D.

For most analyses, I extract an outcome variable from the CCAE claims or HPM data and aggre-

gate it to the individual-quarter level. For example, a main outcome variable, “quantity of oxycodone

consumed by an individual in a quarter,” is derived from the prescription drug flat file, which con-

tains a list of every prescription filled, identified by National Drug Code (NDC) number (including

date filled, intended days supply, and quantity). Truven produced a datafile called RED BOOK to

map NDC numbers onto active ingredients, number of dosage units, and strength per dosage unit.

To identify oxycodone prescriptions, I first process the RED BOOK datafile to identify all NDC num-

bers with oxycodone as the active ingredient. I then merge RED BOOK onto the CCAE prescrip-

tion drug flatfile to identify oxycodone prescriptions. Next, I standardize the unit of measurement,

strength per unit, and quantity measures in order to calculate the milligrams of active ingredient in

each prescription. (For combination prescriptions with multiple active ingredients, only milligrams

of the opioid in the prescription were included.) Finally, I total the active milligrams of oxycodone

in all oxycodone scripts for each individual in each quarter. A similar procedure is utilized for out-

come variables derived from inpatient and outpatient claims, as well as workers’ compensation and

disability data.

As can be seen in Table 2, in a given year approximately 25% of enrollees in the Marketscan

sample will fill a prescription for an opioid.16 This is in conformance with national data for this

period, during which about 75 million patients receive narcotics prescriptions in a given year (Aitken,

2013). In this study I focus primarily on the prescribing of Schedule II opioids, because they are

used for moderate to severe pain and because the reduction in their use has been a primary target

of opioid crackdowns. Oxycodone, a Schedule II drug, is the highest-sold opioid by volume, and

is also the drug most frequently targeted by these crackdowns, due to the fact that it has typically

been considered the most abused and abuseable commonly-prescribed opioid. The highest-volume

Schedule III opioid is hydrocodone; it is the opioid patients are most commonly exposed to in a

given year, as can be seen in Table 2. This difference in frequency versus total volume is because

hydrocodone is more typically used for acute, less-severe, incidental, and shorter-term pain, and thus

is prescribed in low and short doses, whereas oxycodone is typically used for chronic or more-severe

pain, and thus is prescribed in higher doses and for longer-term use.17

16Note that these sample statistics are reported only for the sample of enrollees in the 38 states that are in my study
sample, which is described in detail in Section 4.1 below.

17Although oxycodone is a slightly stronger opioid than hydrocodone, with a MME of 1.5 compared to a MME for hy-
drocodone of 1, this difference in utilization patterns is mostly due to regulatory factors. Hydrocodone formulations were,
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Opioids naturally generate tolerance in their users, and most long-term opioid patients will expe-

rience escalating doses, such that a typical dose for an opiate-naive user will be lower than a typical

dose for an experienced user (and in fact a dose for an opiate-experienced user may be sufficiently

high that it would be fatal to an opiate-naive user). During the period of this study (until 2012) there

was not a medical consensus on whether doses should be allowed to escalate to very high levels,

or rather should be capped at some maximum; guidelines have been increasingly forceful about es-

tablishing a maximum for most patients.18 In the Marketscan prescription claims dataset, I group

prescriptions into therapy episodes, where multiple prescription claims are considered to be part of

the same episode of opioid therapy if they are for drugs with the same generic name and commence

within 3 times the number of days supply of the last prescription filled with that same generic name.

Most prescriptions for oxycodone and hydrocodone – over 80% – are initial prescriptions with no

follow-on prescriptions, and last less than 15 days. Only a small fraction of opioid therapy episodes

(4.5% for oxycodone, 3.3% for hydrocodone) last longer than 90 days. As shown in Table 2, the av-

erage Morphine Milligram Equivalent (MME) per day prescribed of oxycodone escalates over time

as the duration of the therapy episode increases; the same increase is not observed for hydrocodone

because in all formulations available during this period the maximum safe dose was constrained by

the maximum safe dose of other active ingredients, usually acetaminophen.

The end result of these prescribing patterns is an extremely right-skewed distribution, where

most observations in an enrollee-quarter for oxycodone or hydrocodone are zero, but the tail of the

distribution is also very long. My baseline specification will utilize a concave transformation of this

outcome variable (specifically, ln(MME in quarter + 1)), which preserves zeros but reduces the in-

fluence of outliers. As can be seen in Tables 1 and 6, the average MME per enrollee per quarter of

all Schedule II opioids in the Marketscan sample (60.99 mg) is lower than the MME per resident per

until recently, only approved in low doses and in combination with other drugs such as acetaminophen, which, due to its
liver toxicity, is considered to provide some abuse deterrence. The presence of other ingredients such as acetaminophen
means that hydrocodone products are less safe for long-term use, and cannot be escalated to higher dosages. All hy-
drocodone formulations (e.g., Vicodin, Lortab) were Schedule III throughout the study period, whereas all oxycodone
formulations (as well as morphine, fentanyl, hydromorphone, etc.) were Schedule II, and due to being in Schedule III,
hydrocodone was easier to prescribe and obtain than oxycodone. Hydrocodone was rescheduled to Schedule II in August
2014, in large part due to the controversial 2014 FDA approval of Zohydro, a hydrocodone formulation which comes in
much higher doses, does not contain any additional active ingredients such as acetaminophen, and which does not have
any abuse deterrent technology.

18Older pain management guides state that “because of intrapatient variability in physical dependence, opioid tolerance,
subjectivity of pain, and biopsychosocial influences, exact opioid dosing with consistently accurate equivalency tables (for
conversion among opioids) are lacking. Accordingly, opioids have no well-defined maximum dosage to achieve appro-
priate therapeutic benefit. Dosage escalation is commonly used until adequate pain relief is achieved or adverse effects
preclude further escalation. One panel has stated that a ‘reasonable definition for high dose opioid therapy is >200 mg
daily of oral morphine [sulfate] (or equivalent), based on maximum opioid doses studied in randomized trials.’ (Neren-
berg and Fudin, 2010) In 2012, Washington State set a threshold of 120 MME per day, above which primary care physicians
are required by law to consult with a pain management specialist. In Massachusetts, 2015 guidelines recommend that any
patient receiving over 100 MME per day begin tapering to a lower dose. Finally, the 2016 CDC guidelines recommended a
maximum dose of 90 MME per day, with increased prescriber caution above 50 MME per day, as discussed previously.
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quarter in the ARCOS data (106.7 mg), with the lower figure likely reflecting the fact that the Mar-

ketscan sample does not represent the Medicare-covered elderly or the Medicaid-covered poor, who

have greater utilization of these drugs, and also would not capture any illegal or suspicious high-

volume diversion, e.g., the operation of pill mills, which do not usually accept insurance (Ailes et al.,

2015; Hackbarth, Christianson and Miller, 2015).

Other key outcome variables from this data source include inpatient and outpatient spending,

number of days absent from work under workers compensation and short term disability programs,

and whether the patient is identified as having an episode of opioid use disorder. I also aggregate all

spending identifiable in the Marketscan data – inpatient, outpatient, and drug spending, as well as

medical costs and lost wages under workers compensation, and lost wages under short term disabil-

ity, into a total costs measure.

3.2.1 Identification of chronic pain patients and distinct episodes of care

I use this detailed medical and administrative work productivity data to tell a rich, data-driven story

about the experiences of pain patients under increasing opioid prescribing restrictions. Specifically,

I identify individuals who are likely to need pain management due to chronic pain, and document

changes in their inpatient and outpatient care, as well as their likelihood of taking absences from

work.

Identifying chronic pain patients is non-trivial; no single diagnosis or procedure code identi-

fies a patient suffering from chronic pain conditions, which range from back pain and headache to

fibromyalgia and arthritis. Rather, a constellation of diagnosis and procedure codes characterizes

clusters of experiences that are usually associated with pain.

In order identify a cohort of patients most likely to experience tradeoffs related to reductions

in opioid prescribing, I utilize a machine learning algorithm, a tree-based gradient boosted model

(Friedman, Hastie and Tibshirani, 2009), to identify correlations between chronic opioid therapy and

a rich set of clinical covariates. I use this fitted model to generate a predicted subsample of individuals

most likely to suffer from chronic pain conditions. I describe the approach to model training and

construction of this chronic pain cohort in Appendix E. I present summary statistics of individuals

in this chronic pain subsample, compared to the full sample, in Table E2. For many analyses, I focus

on the experiences of this smaller cohort, as it would not be expected that outcomes like diminished

work productivity would accrue to patients only receiving opioids for acute pain.

I further characterize the experience of these chronic pain patients by segmenting their medical

history into distinct episodes of care, and characterizing these episodes of care using using an un-

supervised natural language processing topic modeling algorithm, latent Dirichlet allocation, which

classifies data into topics where each observation in a collection is substantially similar. This ap-

14



proach allows the identification of interpretable episodes of care relating directly to the treatment of

pain conditions (e.g., back surgery); episodes of care that may have pain as a side effect (e.g., cancer);

and unrelated episodes of care that occur at other points during the patients’ time in the sample. This

approach is described in Appendix F.

3.3 National Vital Statistics System Multiple Causes of Death Microdata

Finally, I utilize CDC National Vital Statistics System (NVSS) Multiple Cause of Death Microdata.

This dataset contains a record of every death in the United States from 2001 to 2013, including un-

derlying cause of death and up to 20 additional causes of death listed on the death certificate, de-

mographic data such as race, gender, age, and education, and geographic identifiers at the county

level. I follow the public health literature in identifying drug overdoses caused by prescription opi-

oids and heroin using both the underlying and multiple cause of death fields.19 Heroin-related drug

overdose deaths are identified if the multiple causes of death fields contain code T40.1, and opioid-

related drug overdose deaths are identified if they contain codes T40.2 (morphine, oxycodone, hy-

drocodone), T40.3 (methadone), T40.4 (synthetic narcotics – Fentanyl, Propoxyphene, Meperidine,

Buprenorphine), or T40.6 (“other and unspecified narcotics,” often used when only “opioid over-

dose” is indicated by a medical examiner (Slavova et al., 2015)). For my prescription overdose death

results, I will in most cases present estimates for T40.2 alone, because it is comprised of the Schedule

II drugs for which I find a first-stage prescribing effect. For welfare calculations I will combine all

opioids and heroin, i.e. T40.1-T40.4 and T40.6, in order to estimate the aggregate impact on opiate

and opioid deaths, which will include any offsetting dynamics as users substitute between different

types of opioids/opiates.20

4 Empirical Framework

I exploit state-level variation in the timing of the introduction of Prescription Drug Monitoring Pro-

gram (PDMP) laws to study the impact of PDMP introduction on opioid prescribing, as well as es-

tablish a causal linkage between a reduction in opioid prescribing and a range of other health and

labor outcomes of interest.
19I identify drug overdoses using Underlying Cause of Death codes X40-X44, X60-X64, X85, and Y10-Y14.
20Multiple Cause of Death categories are not mutually exclusive – it is possible to have both heroin and prescription

opioids contribute to a death, and for both codes to be listed in the 20 multiple cause of death fields. This overlap has
increased considerably over the past decade, mostly after the period of study of this paper, as can be seen in Figure 2. Over
years in my sample, about 12% of opioid overdoses also had heroin listed on the death certificate.
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4.1 Institutional details of Prescription Drug Monitoring Programs

As discussed in Section 3.1, the Drug Enforcement Administration (DEA) monitors the flow of con-

trolled substances in the United States, but active monitoring and enforcement largely ends at the

second-to-last step in the distribution chain: the sale of those substances from manufacturers/distributors

to pharmacies, hospitals, and practitioners. Monitoring the last step of the chain, from pharmacies

to patients at the retail level, is largely left to the states. State-level programs to monitor the flow of

these substances date back as early as 1973, and a common approach during this early period used

special triplicate prescription pads to report the prescribing of every controlled substance. Between

1973 and and 2003, 12 states implemented some kind of controlled substances monitoring; these ef-

forts focused on providing information to law enforcement or licensing boards for the purposes of

detecting illicit behavior among patients and doctors.

As opioid prescribing began to grow rapidly in the early 2000s after physician and hospital stan-

dards on pain management were liberalized, concerns about greater oversight spurred increasing

attention to state-level monitoring. In 2002, the DOJ started a grant program to states to support

the implementation of state Prescription Drug Monitoring Programs through the Harold Rogers Pre-

scription Drug Monitoring Program (HRPDMP), and began cooperation with the National Alliance

for Model State Drug Laws (NAMSDL), which published the first Model Prescription Drug Monitor-

ing Program Act for adoption by state legislatures in 2003.

The HRPDMP maintained a concern with law enforcement, but during this period states also be-

gan to recognize that PDMPs could also serve to improve pain management practice and the coordi-

nation of care by providing information to physicians and pharmacists about their patients. Nevada

introduced the first PDMP that was partly intended to improve the practice of pain management via

providing access to the database to physicians and prescribers in 1997. The 2003 NAMSDL Model

PDMP Act included language that the PDMP database should be accessible to prescribers. In 2005,

this shift in focus towards using PDMPs in the practice of medicine (rather than primarily facilitating

law enforcement) was codified in federal guidelines passed as a part of the National All Schedules

Prescription Electronic Reporting Act (NASPER), which also included grant funding for the imple-

mentation of state PDMPs. Due to the NAMSDL model law, most states adopting after 2005 adopted

similar legislation, including an electronic database and online access for physicians and pharmacists

at the point of care, and the focus of those PDMPs was on altering the practice of medicine.21,22

As such, states implementing PDMPs during this period were implementing relatively standard-

ized laws, and the introduction of a PDMP can be thought of as a natural experiment. In this natural

21These later-adopting states even often utilize the same software, from one of a small handful of vendors.
22In some recently-adopting states the relationship between law enforcement and the PDMP is actively non-cooperative,

and access requires probable cause or a subpoena; see e.g., Oregon PDMP v. United States Drug Enforcement Administra-
tion.
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experiment, physicians simultaneously gain access to information about their patients, and also be-

gin undergoing monitoring themselves. PDMPs can thus be thought of as a bundled intervention

which might affect opioid prescribing and distribution in several ways. First, PDMPs provide in-

formation on patients which can be used to improve care, such as if a patient is being prescribed

multiple medications by multiple doctors which are in combination contraindicated due to a drug

interaction. Second, by increasing oversight of the last point in the distribution chain, they should

reduce obviously illegal diversion by pharmacists, physicians (pill mills), and patients (doctor shop-

pers). (Patients might be caught by law enforcement if they are engaging in illegal behavior, but there

are other behaviors, such as a violation of a patient contract specifying the patient may only visit one

doctor, which the PDMP can reveal.) Finally, in conjunction with shifting norms and standards to-

wards the use of opioids, the fact of being monitored by PDMPs should induce doctors to move

their own prescribing practices more in alignment with “best practice,” and in general err on the side

of prescribing fewer rather than more opioids.23 In practice, exactly how PDMPs affect prescribing

practices is an empirical question that will be explored in Section 6.

I exclude the 12 states that implemented some kind of controlled substances monitoring pro-

gram prior to 2003 from my analysis (see Table A2). Institutionally, the highly variable nature of

early controlled substances monitoring approaches at the state level suggests that states with early

PDMPs are likely to be qualitatively different and are thus poor controls for the study of opioid pre-

scribing during the period of study. In particular, assigning a “date of implementation of PDMP” to

these states is difficult; early controlled substances monitoring programs usually did not meet all the

criteria of a PDMP that this study considers (especially physician access), and states with early pro-

grams tended to phase in the characteristics associated with a PDMP that states in the 38-state sample

usually adopted all at once, while simultaneously experimenting with more aggressive policies like

proactively reaching out to doctors about their patients.24

Figure A2 demonstrates that these institutional differences indeed translated into notably differ-

ent prescribing patterns in early-adopting and late-adopting states, both in level and in trend. Early

controlled substances monitoring states saw significantly fewer opioids prescribed and experienced

a slower growth in opioid prescribing during the study period, and appear to have partially substi-

tuted for lower Schedule II opioid usage with greater hydrocodone usage, which is higher in level

23Alpert, Dykstra and Jacobson (2020) document that “must access” PDMPs, which require physicians to access the
PDMP prior to writing an opioid prescription, operate both through an information channel and via imposing “hassle
costs” that increase the cost of prescribing opioids to all patients by consuming valuable clinician time for every prescrip-
tion written. Hassle costs imposed by states may in some sense formalize the softer push towards new norms of earlier
programs.

24For example, NAMSDL lists Illinois as having implemented its controlled substances program variously in 1961 or
1999; the state lists the date of implementation as 1984. And in a 2008 press release announcing reforms that brought
its controlled substances program into conformance with national guidelines and thus finally meeting the definition of a
PDMP, Illinois also called itself a leader in the aggressive monitoring of controlled substances.
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and in growth rate in early adopting states. Other literature on states which implemented early

versions of prescription monitoring have similar findings: Reisman et al. (2009) found lower over-

all opioid prescribing in the 1997-2003 period in the states that had already adopted PDMPs at that

point; Alpert et al. (2019) found that triplicate pad states saw significantly reduced distribution of

OxyContin in particular, and subsequently had lower overdose death rates. Starting in 2012/2013

many of the states in the 38-sample began to strengthen their PDMPs, in particular by mandating

that physicians access the PDMP prior to dispensing any controlled substance, a reform that has

been advocated as a “best practice” for PDMPs, so focusing on the period after 2002 to 2013 provides

a relatively clean experiment.

Public health and economic studies evaluating the effectiveness of PDMPs thus far have been

mixed: most studies find support that PDMPs alter prescribing patterns, but evidence on reductions

in rates of opioid misuse, abuse, and overdose deaths is weaker. Later studies considering PDMPs

with strengthened provisions, such as requirements that clinicians access the database prior prescrib-

ing, are more likely to find effects (Maclean et al., 2020; Meinhofer, 2018). Paulozzi, Kilbourne and

Desai (2011) found that between 1999 and 2005, for states with operational PDMPs, Schedule II pre-

scribing declined, hydrocodone prescribing increased, and overdoses were not affected. Twillman

(2006) documented similar patterns for Schedule II and Schedule III prescribing, and also found no

impact on measures of abuse, overdose, and death. Reifler et al. (2012) found that between 2003 and

2009 states with PDMPs had a lower rate of increase in indicators of opioid abuse and misuse (but

did not consider deaths). Rutkow et al. (2015) found that the introduction of Florida’s PDMP in 2011

was associated with significant declines in prescribing compared to a neighboring state, Georgia, and

Delcher et al. (2015) found this reduction in prescribing corresponded with a reduction in overdose

deaths. More recently, Moyo et al. (2017) find that PDMPs reduce volume of opioids dispensed in

the Medicare program, Bao et al. (2016) find similar effects in a survey of prescribing provided in

ambulatory cate settings, and Buchmueller and Carey (2018) and Bao et al. (2018) find that “must

access” PDMPs reduce inappropriate patterns of prescribing and indicators of patient opioid misuse

in the Medicare program and a commercial claim dataset, respectively. Patrick et al. (2016) and Pardo

(2017) find that PDMPs reduce overdose deaths, especially robust PDMPs (with more intense regula-

tory requirements that employ PDMP “best practices”). Overall, PDMPs appear to affect prescribing

patterns across a variety of settings, but evidence on abuse and overdose outcomes is still somewhat

inconclusive: Fink et al. (2018) conducted a systematic review of this literature and found inconsis-

tent and weak evidence on the impact of PDMP implementation on outcomes of nonfatal and fatal

overdoses.

Following most of the literature above, my primary source for dates of PDMP implementation is
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the National Alliance of Model State Drug Laws.25 For most specifications examining the impact of

PDMPs on the practice of medicine, I code the initiation of a PDMP according to date of physician

access (Table A1). However, there is usually a phase-in period in which pharmacists begin reporting

filled prescriptions to the database before physicians gain access, and it is likely that pharmacists

and others earlier in the supply chain became aware of, and felt monitored by, the PDMP’s imple-

mentation before physicians do. Therefore, for the regressions considering surveillance data on the

census of all U.S. opioid prescribing (the ARCOS data), I utilize the date PDMP begins collection from

pharmacists, which is typically 3-12 months prior to date of access.26,27

The identifying assumption of my empirical strategy is parallel trends in adopting (treatment) and

non-adopting (control) states before the implementation of the law; for all my results I will rely heav-

ily on event-study style specifications, described below in Section 5, which estimate leads and lags of

the law’s implementation, and thus allow for visual verification that the parallel trends assumption

holds. I also conduct further informative robustness checks using recent literature on two-way fixed

effects estimators with heterogeneous treatment effects in Appendix C. I interpret the introduction

of a PDMP as a mechanism that on average reduces individual opioid consumption, and interpret

my results on e.g., work absences as causally linked to a reduction in opioid availability. This inter-

pretation requires that there is no other channel by which the introduction of a PDMP might affect

work and functionality other than through the availability of opioids. 28

25An archived version reflecting the period of study can be found here:
https://web.archive.org/web/20180419233955/https://namsdl.org/library/580225E9-E469-AFA9-

50E7579C1D738E71; in a few cases internet searches of news articles regarding a PDMP becoming operation yielded
slightly different dates, so there are a few discrepancies from this archived version.

26Date of collection is not available for every state; in states where collection date is missing or there is a large discrepancy
of over one year between date of access and date of collection, I code the date of collection as the quarter prior to date of
physician access.

27Horwitz et al. (2020) et al consider the somewhat inconclusive literature on the effects of PDMPs (detailed below)
and show that there is meaningful inconsistency in coding of various states’ dates of PDMP implementation. I consider
robustness of my results to their legal coding vis-a-vis the more-commonly used NAMSDL database in Appendix A. I also
conduct robustness checks to the choice of 2003 as a cutoff, shown in Table B1. Additionally, in two states (OH and NM),
several phases of implementation did occur during my sample period (Kasich, 2015; Board of Pharmacy, 2012). In both
cases I code using the latter date of implementation, but results are robust to alternate coding using the first date, or to
dropping those states from the sample. Because my focus in this paper is on on characterizing the impact of a reduction
in opioid availability on prescribing and the practice of pain management with the PDMP as a lever that changes opioid
availability, rather than on studying the impact of PDMPs per se, I prefer to use the later date of implementation for those
two states, as this is when the strengthened version of their PDMP came into effect.

28A slight nuance when considering this identifying assumption is that because PDMPs are a bundled intervention, we
might expect that the channels by which opioid supply are reduced are several. In particular, a patient may find his or her
opioid supply reduced by their doctor because the doctor found something concerning in their record. They may never
be prescribed an opioid because the doctor fears prescribing too many and being flagged in the PDMP. Alternatively, even
if they are not a pain patient, if they are an illicit drug user, they may find their opioid use reduced because the overall
supply of illicit opioids has been reduced post-PDMP. For these outcomes, I cannot directly detangle whether an increase
in absences is due to a a reduction in legitimate versus illegitimate opioid use. I will consider some distributional results
which shed light onto the channels in operation, but I am for the most part not able to observe this directly.
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5 Empirical Analysis: Policy Successes of PDMPs

5.1 Opioid distribution decreases

I first consider the impact of the introduction of a PDMP on the amount of opioids distributed, uti-

lizing the DEA ARCOS monitoring data for the sale of prescription opioids.

I estimate the following regression models:

.BC =  + �B +�C +
∑
�

����,BC + �-BC + &BC (1)

.BC =  + �B +�C + �1 1(%�"%BC) + �2-BC + &BC (2)

where B is state and C is time (quarter), and ��,BC are dummy variables for each year before and after

the policy is introduced. � is normalized to 0 in the year before PDMP data collection begins. .BC is

milligrams of morphine equivalent sold per state resident. �B and �C are state and time fixed effects.

-BC are state controls including unemployment rate and population over 60, and population. Robust

standard errors, clustered at the state level, are reported.

Specification 1 utilizes an event-study approach that allows visualization of the impact of the

law over time through the estimated coefficients on leads and lags, ��. This specification, versions

of which I will utilize heavily throughout this paper, allows visualization of the law’s impact over

time, and also facilitates verification of the parallel trends identifying assumption, by examining

coefficients on dummies for the period prior to the law’s implementation. Specification 2 is a less-

flexible specification which summarizes the mean effect of the introduction of a PDMP using �1, the

estimated coefficient on a dummy indicator for presence of the law, 1(%�"%BC).

The event study for impact of the introduction of a PDMP on Schedule II distribution, estimated

according to Equation 1, is depicted in Figure 3. For Schedule II opioids, there is a decline in dis-

pensing that lasts for about � = 4 years, before trending somewhat back towards zero. There is no

evidence of clear differential pretrends that would indicate policy endogeneity or threaten the em-

pirical framework’s internal validity.29 The corresponding point estimate, estimated according to

29If I utilize date of physician access (as is used for the rest of the paper) rather than date of the initiation of data collection
from pharmacies, the event study specification shows a slight anticipatory decline in opioid prescription in the year prior
to the law’s implementation. There are several reasons why prescribing might start to decline earlier in the ARCOS data,
and why the same effect is not apparent in the Marketscan prescribing data, as will be seen below. Although PDMPs are
not usually high-profile policy initiatives with long lead-times before enactment, they do often have a phase-in period in
which pharmacists begin reporting filled prescriptions to the database before physicians gain access, and it is likely that
pharmacists became aware of, and felt monitored by, the PDMP’s implementation before physicians. Assuming that some
diversion occurs at the pharmacy level, this could explain the anticipatory decline in the year prior that shows up only in
the ARCOS surveillance data. A related but separate story would be that physicians operating pill mills – who would show
up in ARCOS data but not Marketscan because pill mills usually operate cash-only – pay more attention to the passage of
PDMP laws, and thus adjust their behavior in advance of the date of physician access, as soon as they are aware of being
monitored. These results highlight, as discuessed above, that PDMPs are a bundled intervention that reduce prescribing
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Equation 2 and displayed in Table 3, indicates that the quantity of opioids prescribed per resident

per quarter in a state declines by about 11.15 MME, compared to an overall sample mean of 106.7

MME, representing an overall reduction in opioid dispensing per capita of about 10.4%. Columns

(2)–(3) of Table 3 shows that while a substantial fraction of Schedule II prescribing is for drugs other

than oxycodone, the entirety of the main effect is explained by a reduction in oxycodone, which is,

as discussed above in Section 3.2, the primary target of these laws.30 Finally, Column (4) shows

that there is possibly a partial substitution towards hydrocodone prescribing, which is a result that

echoes similar results in the PDMP literature review above. Hydrocodone is a weaker opioid that

was in this period in a lower DEA schedule (Schedule III) and is typically prescribed in a limited

dose; this partial substitution only offsets the overall decline in prescribing by about one-fifth.

Finally, I subject the Schedule II opioid distribution results to a battery of robustness checks, de-

picted in Table B1. I show results are robust to alternate codings of the legal dates of implementation,

and alternate cut-off dates for what is excluded as an ‘early PDMP’ state; this produces different state

samples. I show results are robust to inclusion of state-specific linear trends, suggesting differential

state pre-trends are not driving the results. Results in columns (8) and (9) for different cut-off dates

for being designated an ‘early PDMP’ suggest that there may be heterogeneous treatment effects of

PDMP laws, with later implementations more effective. Recent work, discussed in Appendix C, has

demonstrated that in many difference-in-differences applications there is significant bias in the two-

way fixed effects estimator when there is heterogeneity in the treatment effect and treatment timing

varies. This motivates the robustness check in column (11), where I implement the de Chaisemartin

and D’Haultfœuille (2020) estimation approach.31,32

The result that total Schedule II dispensing declines post-PDMP indicates that these laws have

had a clear policy success. I will explore in more detail the ways in which Schedule II opioid pre-

scribing and dispensing changed below, in Section 6.1, where I can exploit rich prescription claims to

both by increasing monitoring and scrutiny of physicians and pharmacists, and by providing physicians more information
on their patients.

30The relative size of the non-oxycodone Schedule II drugs category, with a sample mean of 47.9 MME as shown in
Table 3, is possibly somewhat overstated. This category is dominated by Fentanyl, which is a very potent opioid used for
the treatment of cancer in highly opioid tolerant individuals. Because its MME is 75, conversion to morphine equivalents
makes fentanyl look higher-volume than it is in practice.

31 The only robustness check in Table B1 yielding a substantively different result is the population-weighted regression.
This is a result of the fact that Florida, a large state, had an extremely large decline in opioid prescribing coinciding with the
introduction of its state PDMP. This was likely due in part to reasons not fully attributable to the PDMP itself: the DEA and
state law enforcement undertook a concerted effort during the same time period to raid and shut down pill mills that had
been operating prolifically, notoriously supplying much of the southeast’s supply of illicit pills (Meinhofer, 2015). Florida
is an outlier in regards to the level of prescribing attained prior to crackdown as well as the law enforcement scrutiny it
received coinciding with PDMP introduction, which made national headlines; this kind of contamination of the PDMP
‘experiment’ by other law enforcement efforts is not present in other states. Dropping Florida from the sample reduces the
point estimate to a similar level and significance as the unweighted specification.

32Results also pass a placebo exercise, not shown, where each state is randomly assigned a date of implementation to my
38-state sample, then estimating �1 for the placebo PDMP laws 1000 times. My baseline point estimate is lower than 99.2%
of estimated �1s.
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better understand the nature of this decline.

5.2 Opioid overdose deaths decline

I next consider whether deaths indeed declined after the introduction of a PDMP. I estimate the

following specifications on the CDC mortality data:

.2BC =  + �2 +�C +
∑
�

����,BC + �-2BC + &2BC (3)

.2BC =  + �2 +�C + �1 1(%�"%BC) + �-2BC + &2BC (4)

where .2BC is county-level opioid overdose deaths (T40.2), specified as ln(overdose deaths2BC +
1) in the baseline OLS specification to account for zeros, and observations are weighted by county

population.33

I document that the reduction in opioid prescribing brought about by the introduction of a PDMP

has a substantial and lasting effect on opioid-related overdose deaths. As is shown in Figure 4 and

Table B3, Column (1), the introduction of a PDMP resulted in an approximate decline in overdose

deaths of around 8% after 1-2 years, and reached 16%-17% in later years.

I conduct robustness checks on this result in Tables B2 and B3. Table B2 conducts a battery of

checks related to the choice of PDMP legal coding, similar to those conducted on the ARCOS data.

Table B3 considers robustness to different choices of models. In Panel C, I show that the dynamic

treatment effect specification is robust to a wide variety of model choices, including a Poisson count

model and a linear model estimated on the overdose death rate. However, the static two-way fixed

effects estimator is fragile to specification choice. As discussed above and in Appendix C, this bias

frequently arises in difference-in-differences applications with variation in treatment timing and het-

erogeneity in treatment effects.34 This motivates the estimation and reporting of a dynamic average

treatment effect for the treated states (ATE/ATT), estimated according to the procedure in de Chaise-

martin and D’Haultfœuille (2020). The procedure produces much more stable estimates of the impact

of the law, as can be seen in Panel B in Tables B2 and B3. This yields a summary point estimate of

10.8%, or the impact of the introduction of a PDMP on overdose deaths was a 10.8% reduction in

fatalities. This dynamic ATT is also reported in Table 4.

33I consider robustness to this transformation of the outcome variable in Table B3.
34Griffin et al. (2020) conduct a simulation exercise that considers the statistical performance of difference-in-differences

research designs when estimating the impacts of state-level opioid policies on overdose mortality. They find that many
commonly-used DiD study designs and model specifications have low statistical power to detect an effect, as well as high
rates of Type I error. It is possible that one cause of these findings is related to bias in the TWFE estimator, which can induce
fragility of the estimated effects to choice of model.
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The number of lives saved per year can be roughly approximated using a back-of-the-envelope

calculation: a 10.8% reduction in 2,267 counties with a mean of 0.62 opioid deaths per quarter implies

607 deaths averted per year in my 38-state sample, or around 8,000 deaths during the 2001-2013

period. A counterfactual simulation exercise using the dynamic Poisson specification reported in

Table B3, Column (4), where deaths are predicted as if every state had implemented a PDMP in

Quarter 1 of 2004, produces a similar number, around 9,000 deaths fewer than the 73,000 deaths that

occurred in the 38 states in the study during that period.

Finally, I account for emerging concerns that cracking down on prescription opioids has led to

substitution towards more-dangerous heroin use, which might offset the gains documented in over-

dose mortality linked to prescription opioids, by estimating the impact of PDMP introduction on all

opioid and heroin-linked deaths, indicated by multiple causes of death codes T40.1-T40.4 and T40.6.

I find no meaningful indicators that the main effect is attenuated by substitution towards these other

drug categories, and if anything considering all types of opioid overdose death increases the implied

effect. The results are reported in Table 4, Column (2). While precision is reduced in this specifi-

cation, an 8.2% reduction total opioid overdose deaths off a mean of 1.37 opioid deaths per quarter

implies a larger net number of deaths averted, around 13,000; similarly, in the counterfactual Poisson

simulation, about 11,000 deaths are averted out of 161,000 during that period.35

5.3 Opioid abuse declines

Additionally, I construct an indicator of rates of opioid use disorder using the Marketscan medical

claims data, described above, and use the indicator for a separate measure of the impact of PDMP

introduction on opioid harms. Considering opioid use disorder and opioid abuse provides additional

insight, beyond fatalities, on whether PDMPs had an impact on the overall burden of disease arising

from the opioid epidemic. Additionally, in Section 7.1 I will use the fact that this indicator of abuse is

linked to the medical claims and work data to make statements about the private costs and benefits

of reducing access to prescribing, by measuring the impact of PDMP introduction on rates of opioid

abuse in chronic pain patients.

I identify episodes of opioid use disorder using opioid dependence and opioid overdose diagnosis

codes, as well as observed prescriptions for OUD treatment medications, and claims in mental health

and substance abuse facilities, and use a custom episode grouper to link related claims across time.36

35In prior versions of this paper, a temporary 1-year increase in heroin overdose deaths was reported, followed by
a subsequent decline. This result is especially fragile to choice of specification, as detailed above, and in particular is
not robust to estimation using the procedure in de Chaisemartin and D’Haultfœuille (2020), and so is not included in
subsequent revisions.

36Specifically, I consider a person to have developed opioid use disorder if they meet two out of three criteria in a given
month: (a) having any ICD-0 code for opioid dependence or overdose (one of 304.00-304.03, 304.70-304.73, 305.50-305.53,
965.00-965.02, 965.09, E850.0-E850.2), (b) having a opioid use disorder treatment prescription, or any claim containing
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I find low rates of opioid use disorder – about 1.1% of enrollees prescribed oxycodone were later

observed with a claim relating to opioid use disorder, and only about 23,000 enrollees in the full

dataset are identified as having opioid use disorder. These numbers are in line with findings of other

research on opioid use disorder in claims data (Barocas et al., 2018), and are likely to represent an

undercount of the true rates of opioid abuse in this population. This undercount reflects widespread

under-diagnosis and under-treatment of opioid use disorder in general.37

I estimate the following models for the development of opioid use disorder, using logistic regres-

sion for my primary specifications:

1($*�)8BC =  + �4 +�C +
∑
�

����,BC + �-8C + &84BC (5)

1($*�)8BC =  + �4 +�C + �1 1(%�"%BC) + �2-8C + &84BC (6)

where 8 is individual, B is state, 4 is entry-cohort, and C is quarter, and 1($*�)8BC is a binary outcome

variable indicating whether the enrollee meets the criteria for opioid use disorder.

The results are depicted in Table 5, column (1), and Figure 5. The point estimates can be inter-

preted as an approximation of the reduction in the relative risk for small numbers at this order of

magnitude, and column 1 thus reports an approximate 6% decline in cases after the introduction of

a PDMP.38 The event study shows a pattern that is similar to the event study for opioid overdose

deaths. The reduction in opioid abuse episodes phases in over the first two years and persists for at

least four years.

6 Empirical Analysis: Consequences of Reduced Opioid Prescribing

Next, I consider the consequences of reduced opioid prescribing on the treatment of pain. Pain man-

agement is a classic ‘grey area of medicine’ – the evidence base is mixed, and patient preferences

should be important to determining a course of treatment (Chandra, Cutler and Song, 2012). Al-

though opioid therapy has become controversial in recent years, and the evidence base is very incon-

buprenorphine as an active ingredient, or (c) a claim in a mental health or substance abuse facility, or with a mental health
or substance abuse provider.

37The rate of 3 per 1,000 implies approximately 941,000 people with opioid use disorder in the U.S. during this time
period, this is about half the estimated 1.8 million Americans with OUD. However, a 50% undercount is likely the lower
bound, as it is likely that people suffering from opioid use disorder are disproportionately uninsured or on Medicaid.

38These results are very similar to results estimated with a linear probability model using individual or entry-cohort fixed
effects, but the logistic regression results are presented because they are more intepretable, especially when comparing
across groups with different rates of opioid use disorder. For example, for the full sample in Table 5, Column (1), the
percentage point reduction estimated by the linear probability model is -0.0001415; with a mean rate in the sample of
0.00156, 100,000 individual-quarters would have 156 cases of opioid use disorder, and the estimated effect of -.0000875
would represent 8.75 fewer cases after the introduction of a PDMP, or a 5.6% reduction in cases, which is very similar to
the relative effect estimated with the logistic regression.
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clusive on safety and efficacy, as is explored in Sections 1 and 2, other approaches to pain manage-

ment, especially interventional pain management (e.g., epidural steroid injections), and surgery are

also controversial, as evidence on their effectiveness has been mixed.39 Heavy utilization of opioid

therapy to manage pain, rather than physical therapy, interventional pain management approaches,

or surgery, likely found favor in part due to the fact that prescribing opioids is far cheaper for the

payer and less time-intensive for the provider.40 But if there are agency issues between the insurer

and patient, or doctor and patient, reducing opioid availability and shifting towards more expensive

therapies which may treat the root of the pain problem rather than the symptom may be preferable

for some patients, especially if they consider their private risks of addiction or overdose (Thomas

et al., 2015).

I exploit rich claims data on healthcare utilization (the Marketscan databases) to uncover how

medical treatment of pain changes in response to the introduction of a PDMP. For these datasets, I

aggregate raw claim-level data to observations at the individual-quarter as described in Section 3.2,

and estimate:

.8C =  + �8 +�C +
∑
�

����,8BC + �-8C + &8C (7)

.8C =  + �8 +�C + �1 1(%�"%8BC) + �2-8C + &8C (8)

where 8 is individual, B is state, and C is quarter, and .8C is an outcome variable constructed from

Marketscan raw data such as ln(morphine milligram equivalent [MME] per quarter+ 1)
or ln(inpatient and outpatient spending + 1). For binary outcome variable specifications, I estimate

both a linear probability model and a logistic model. For count data (days absent under workers

compensation and short-term disability), I estimate a Poisson pseudo-maximum likelihood model.

6.1 Utilization of opioids for the treatment of pain

I first document that the overall effect of PDMP introduction on opioid prescribing for the Marketscan

medical claims dataset, which represents the experience of approximately 175 million American in-

dividuals with employer-sponsored health insurance, comports well with the results from the DEA

ARCOS controlled substance monitoring dataset, which in theory contains a complete accounting of

all opioids that are distributed. The results of estimating Equations 7 and 8 are presented in Figure 6

and Table 6.

The results show a statistically significant decline in Morphine Milligram Equivalent (MME) of

39As noted in a previous footnote, in 2014 Medicare cut reimbursement rates to many kinds of interventional pain man-
agement for this reason. Certain kinds of surgery, such as spinal fusion surgery for back pain, are also considered ques-
tionably evidence-based (Christensen, 2004).

40Note that other developed countries, particularly in Europe, favor an integrative approach to pain management, and
use far fewer opioids per capita.
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Schedule II opioid prescribed for all individuals in the sample, post PDMP introduction. I present

results for ln(MME prescribed in quarter + 1) as the dependent variable in Column 1.41 The point

estimate from Panel 1 indicates that there is a 0.5% decrease in the geometric mean of the distribution

of MME + 1 for the full sample.42 Column 4 considers the extensive margin of prescribing using a

binary outcome variable. The results indicate that the introduction of a PDMP reduces the overall

probability of an enrollee receiving opioids in a quarter by 0.0562 percentage points, i.e., from about

2.47 percent overall, to about 2.41 percent. This estimate captures reductions on the extensive margin,

i.e., patients entering or exiting opioid therapy, and (unlike the specification in Column 1) does not

capture changes in the level of prescribing, and specifically would not capture dosage reductions

for high-utilization chronic pain patients. Column (5) similarly reports the extensive margin effects,

estimated with a logistic regression. As discussed previously, the point estimate can be interpreted as

the reduction in relative risk, and it closely matches the estimate of Column (4), which implies a 2.3%

reduction in overall enrollees receiving opioids in a given quarter.43 Finally, considering the results

in Columns (2) and (3) assists in understanding the change in overall prescribing levels by using the

raw level of MME dispensed in the quarter as the dependent variable. Column (2) reports a Poisson

pseudo-maximum likelihood specification implying a reduction in overall prescribing quantity of

around 9%. Finally, the raw MME per quarter OLS specification gives an unbiased estimate of the

average reduction in per capita opioids dispensed per quarter in the Marketscan claims data, and

thus is useful for comparison to the ARCOS result. The result demonstrates that the introduction

of a PDMP is associated with an average of 6.43 MME fewer Schedule II opioids prescribed per

patient per quarter (from a mean of 60.99 MME, so a decrease of about 10.5% in the total quantity).

As discussed in Section 3.2, the average MME per capita in the ARCOS dataset is somewhat higher

than in the Marketscan claims data (106.7 MME versus 60.99 MME per capita per quarter) likely

because Marketscan does not include the elderly or the poor, and does not capture most illegal or

high-volume suspicious diversion. The point estimate of the reduction in MME per capita for the

Marketscan prescription claims dataset represents a 10.5% decline, compared to an 11.2% decline in

MME per capita for the ARCOS controlled substances monitoring data.

That these reductions are so similar across the two datasets is suggestive that PDMPs are af-

41As detailed above in Section 3.2, due to the fact that individuals tolerate physically to opioids very quickly, the opioid
distribution for the overall Marketscan sample is highly skewed, with a large number of zeros as well as a very long right
tail. I utilize ln(MME + 1) as the outcome variable in my baseline specification because it is the most straightforward trans-
formation with which to deal with outliers, while also retaining the large number of zeros in the sample and information
about the quantity/level consumed in quarter. I consider an alternate transformation, the inverse hyperbolic sine, in Table
B4; results are similarly robust to other concave transformations such as

√
""� or ln(""� + 0.01), not shown.

42(4�1 − 1) ∗ 100 is the percent change in the geometric mean of MME + 1 associated with going from no PDMP to PDMP.
The geometric mean captures the central tendency of the distribution and is in this case very different from the arithmetic
mean – 60.99 MME per quarter (arithmetic) versus 0.15 MME per quarter (geometric).

43Using the point estimate and mean from Column (4), 1 − (.0247− .000562)/.02470 = .0228, which is very similar to the
estimate in column (5).
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fecting prescribing and dispensing roughly proportionally for disparate U.S. populations, including

those with employer-sponsored insurance. It also demonstrates that the reduction in overall opioid

availability is not simply due to a reduction in high-volume diversion through pill mills or phar-

macy theft, and is occurring for employer insured patients as well. The next section considers the

characteristics of medical users who experience the sharpest declines in opioid access.

6.1.1 Margins along which opioid prescribing is reduced

As described in Section 2, doctors and public health practitioners are increasingly questioning the

role of opioids in the treatment of long-term, chronic non-cancer pain. Recent legal initiatives have

also targeted prescribing for acute conditions, based on the concern that excess prescribing in the

acute setting can lead to abuse among those patients, or that left-over pills might be diverted (Miller,

2015).

I attempt to better understand the margins along which the PDMP-induced reduction in opioid

prescribing is occurring, using several approaches. First, as detailed in Section 3.2, I group opioid

prescription claims into ‘opioid therapy episodes’ based on temporal proximity and generic ingredi-

ent, allowing me to observe whether opioid therapy is initiated in a given quarter when the enrollee is

not currently taking an opioid. Recall from Section 3 that most prescriptions for opioids (around 80%)

end after one prescription. Table 7, Panel A, demonstrates that there is a relative reduction in whether

opioid therapy is initiated at all of about 2%. Given that the majority of opioid therapy episodes are

short-term therapy for acute pain conditions such as broken bones, it is likely that this reduction

in initiation of opioid therapy represents a reduction in the treatment of acute pain episodes using

opioid therapy.

In Table 7, Panel B, I disaggregate the distribution of enrollee-quarter observations for MME opi-

oid into bins (where thresholds are set according to CDC prescribing guideline thresholds discussed

in Footnote 2 and explained in the table notes), and define the outcome variables as binary (0/1)

for whether or not a quantity of opioid within the thresholds for that bin were observed in a given

quarter. This exercise demonstrates that there is shrinkage at the highest parts of the distribution, rep-

resenting continuous chronic prescriptions (Panel B-6, representing patients receiving approximately

8,100 MME opioid in the quarter or greater, or 90 MME per day continuously, and Panel B-5, between

50 MME and 90 MME per day). It is unclear from this exercise whether Panels B-2 through B-4 see a

decline; the insignificant results for the lower bins are consistent with a story where individuals in the

top bins have been moved to lower bins, while those in the lower bins have been discontinued. But it

is also consistent with a story where individuals move from the top bins to “no opioids;” this would

be a story where PDMPs primarily function to catch high-volume “doctor shoppers,” while the rest

of the distribution is unaffected. The significant reduction from the top bins suggests that people on
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chronic opioid therapy are receiving a reduction in dose, or are being discontinued entirely, and the

result is of large magnitude, representing an 11 percent reduction in the number of patients in that

bin.

Taking the results from Panels A and B together, I conclude that the reduction in opioid prescrib-

ing is occurring at all parts of the prescribing distribution – for initial prescriptions (most of which

will be for acute pain), and for existing high-volume users (likely, individuals with chronic pain,

and/or doctor-shoppers).

6.1.2 Robustness and specification checks

Robustness checks presented in Table B4 indicate that the main Marketscan results for prescribing

are robust to a variety of other alternate specifications, including state-specific linear time trends and

most alternate legal codings, as well as alternate concave transformations of the dependent variable.

Additionally, I consider in Appendix D concerns related to the discussion in Section 3 regarding the

manner in which the Marketscan sample is constructed. Because Marketscan data is not a represen-

tative national sample, but rather is a sample obtained from employers (meaning that individuals

working for the same firm, whose characteristics are likely to be correlated, enter or leave the sample

in groups as their employers join or exit), unobserved heterogeneity could be introduced as differ-

ent types of individuals move into and out of sample in blocks. In Appendix Table D1, I consider

robustness of the baseline specification to alternate fixed effects models that account for this sam-

ple construction, and in Appendix Figure D1 I show that entry-cohort fixed effects (which are much

lower-dimensional) are sufficient to control for unobserved heterogeneity in cohorts.

6.2 Welfare effects of reduced opioid prescribing on patients with chronic pain

As established in Section 6.1, opioid prescribing declines for both initial and high-quantity chronic

prescriptions, and thus likely affects patients with both acute and chronic pain. If a reduction in

opioid prescribing falls on chronic pain patients, this would raise potential welfare concerns arising

from burdens associated with their need to change their approach to pain care. Specifically, we might

expect to observe a compensating increase in other kinds of medical spending to manage their pain,

and might expect to observe other negative outcomes such as reduced labor supply.

I exploit the richness of the Marketscan data to train a machine learning model (described in Ap-

pendix E) that can identify a cohort of chronic pain patients for study using an array of outcomes on

their health, labor supply, and opioid use disorder. Appendix Table E2 depicts demographic details

about this selected cohort. Compared to the full sample (excluding the chronic pain cohort), chronic

pain patients are more likely to be older, female, and working in jobs that appear likely to be blue-
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collar (unionized and paid hourly instead of salaried, and employed in sectors like manufacturing

rather than sectors like finance, insurance, and real estate). As can be seen in Table 8, this cohort is

indeed prescribed a much higher volume of opioids – about five times as much volume as the full

sample (318 MME per individual per quarter compared to 60.99 MME per individual per quarter),

and, like the full sample, they similarly experience a reduction in total opioid prescribing after PDMP

introduction. Reflecting overall worse health, total medical spending in this cohort is three times that

of the full sample, and they miss four-and-a-half times more work under workers compensation and

short term disability than the full sample.

6.2.1 Substitution towards more expensive inpatient and outpatient spending

In Table 8, I display estimates of the impact of a PDMP on overall inpatient and outpatient spending

on the chronic pain cohort, and compare to the full sample of enrollees. The event study for the

impact of PDMPs on inpatient and outpatient spending for this chronic pain sample is depicted in

Figure 7. Post-PDMP, there is a discontinuous jump in medical spending that is persistent and ranges

from approximately 5% initially to 10% in later years.

Next, I use the richness of the claims data to segment and characterize the chronic pain cohort’s

health episodes using an unsupervised learning natural language processing algorithm, latent Dirich-

let allocation, which classifies data into topics where each observation in a collection is substantially

similar. Specifically, the algorithm reads in all the rich details provided in the claims data related to

a temporally-linked episode of care – all diagnosis codes, procedure codes, visits to different types

of physicians, etc. – and groups, in an unsupervised manner, these episodes into similar kinds of ex-

periences where words (in this case, medical codes, etc.) appear together frequently. By identifying

interpretable groupings of types of care experienced by chronic pain patients, the approach gives an

enriched qualitative understanding of the experiences of the chronic pain cohort.

A descriptive listing of the 15 topic categories is provided in Appendix Table F1, and several ex-

ample topic groups are presented in Appendix F.44 Topic 2, depicted in Figure F1 identifies claims

related to inpatient surgeries and hospitalizations related to musculoskeletal pain and joint disor-

ders, while Topic 8, depicted in Figure F2 identifies claims related to outpatient treatment of pain

conditions via physical therapy, chiropractic medicine, etc.45 In Table F1 and F2, I group these two

types of medical claims episodes together as “pain episodes.” In Table F2, I split the chronic pain

cohort’s sample over time according to the type of medical episode, and show specifically that total

44All fifteen groups are presented in an interactive manner on https://angelakilby.com/html/LDA-pain_patients.

html.
45The algorithm also illustrates that the chronic pain cohort experiences other types of medical episodes. For example, the

algorithm identifies ER visits as a category of medical episode (Topic 12, depicted in Figure F3), routine care like office visits
for preventative medicine and routine tests (Topic 4, depicted in Figure F4), and other serious types of medical experience
like cancer (Topic 6, depicted in Figure F5). Note that the topic ordering in the LDA topic model is not meaningful.
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spending on pain-related episodes grows more costly after the introduction of a PDMP and associ-

ated reductions in opioid prescribing. This substitution towards more expensive kinds of pain care

is a financially costly result to the insurer of prescribing restrictions. As discussed above in the intro-

duction to this section, this substitution away from opioids and towards alternate kinds of pain care

delivered in inpatient and outpatient settings may be welfare-decreasing or increasing, depending

on patient preferences over pain management inputs, many of which have a questionable evidence

base, and whether there were agency problems between individuals and their insurer in getting more

expensive procedures such as surgery approved. The substitution is suggestive of an increased bur-

den for pain patients, motivating examination of work productivity effects for these patients in the

next section.46

These results, in combination with the results in Section 5.1, demonstrate that the reduction in

opioid prescribing is occurring not only for non-medical users, people engaging in diversion, or pill

mills, but also for medical users with legitimate needs for pain management. Because opioid medi-

cations are cheap, these results show that overall medical costs for chronic pain patients will increase

with a reduction in opioid availability. Given past medical studies, detailed in Section 2, have indi-

cated that higher opioid use is associated with higher medical spending, this result contextualizes

those findings, indicating the observed associations in those studies are likely not causal. Nonethe-

less, it is not clear from this result alone that patients are being harmed by an opioid crackdown from

a private welfare perspective, given insured patients do not bear the majority of the cost of this in-

crease in spending. The substitution towards new and more expensive kinds of pain management

care is suggestive, but not definitive, that their pain may not be properly managed after the reduction

in opioid availability.

6.2.2 Increased absences and reduced labor supply

I exploit a unique feature of the Marketscan claims dataset – its linkage to workers’ compensation

claims and short-term disability data – to examine the work ramifications of reducing opioids for

workers that are likely to need them to manage pain. As discussed above, the chronic pain sam-

ple misses four-and-a-half times more work under workers compensation and short term disability

than the full sample. Workers compensation specifically is often cited as a domain where opioids are

overprescribed: about 70% of workers missing days of work under workers’ compensation received

46In other analysis (not shown), I consider substitution to alternate forms of pain management in an alternate manner,
by disaggregating spending by hand according to the associated diagnosis and procedure codes, using rough categories
of procedures that might provide pain management as a substitute for opioid therapy. For example, under interventional
pain management, I included procedures such as epidural steroid injections and spinal cord stimulation; under surgery
I included procedures such as spinal fusion surgery and joint replacement. I found notable substitution, e.g., towards
spending on surgery – a 1.3% increase. However, claims data is highly disaggregated and it can be difficult to identify all
expenses associated with a given episode of surgery care; the above approach groups episodes of care in a natural manner
and characterizes them according to the most common types of procedures and diagnoses in each episode.
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an opioid prescription. There has also been increasing alarm among workers’ compensation payers

that narcotics use is contributing to increases in total medical and indemnity (lost wages) costs for

injured workers. A typical study concluded that “workers prescribed even one opioid had average

total claims costs 4-8 times greater than claimants with similar claims who didn’t get opioids... the

cost of a workplace injury is nine times higher when a strong narcotic like OxyContin is used than

when a narcotic is not used (Rosenblum, 2012).” As discussed in the introduction, these studies usu-

ally use matched controls, (see e.g., Webster, Verma and Gatchel (2007); Franklin et al. (2008)) and are

plagued by endogeneity problems. For each chronic pain enrollee, I consider all absenteeism across

workers compensation and short-term disability. As with workers’ compensation, the literature on

the role of opioids in short-term disability has been observational, and has typically found that med-

ical opioid use is associated with decreased work and function (Ashworth et al., 2013; Mahmud et al.,

2000; Franklin et al., 2008).

In the sample of chronic pain patients, I document a strong and persistent increase in days missed

under workers’ compensation and short-term disability that coincides with the introduction of a Pre-

scription Drug Monitoring Program. The point estimates are displayed in Table 8 and the equivalent

event study is depicted in Figure 8; the introduction of a PDMP coincides with a persistent increase

in days missed of about 6.2% on average. The change in days missed seems to occur on the intensive

margin; as is shown in Table B5, the increase does not come from an increase in the frequency of a

worker being injured or taking short term disability, nor does the introduction of a PDMP seem to

affect whether a workers’ compensation injury results in having some days lost versus none. Table

F2 shows that like the increases in inpatient and outpatient spending, these increases in missed days

of work are associated temporally with the treatment of pain conditions specifically.

The decline in work output for chronic pain patients on workers’ compensation and disability

after an opioid crackdown is important because it is a clear demonstration of direct welfare losses

due to the reduction in availability of opioids and subsequent increase in pain. Aside from being

of direct policy relevance to workers’ compensation payers and policymakers due to increased costs

of losts wages, the results linking reduced opioid use to increased days missed provide evidence

that opioid use is causally linked to improved ability to function in the long term for people needing

pain management, a result with broader implications for individuals in pain. As discussed above,

prior evidence on long term opioid use and overall function has been limited to observational studies

because no randomized trials of opioids have been conducted that last more than one year; this pa-

per’s quasi-experimental approach uncovers a result that is of the opposite sign to the observational

approach.

In conjunction with the results on increased inpatient and outpatient spending in Section 6.2.1,

these results indicate that pain and function might be worsening for pain patients after an opioid
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crackdown, suggesting important welfare losses for individuals with pain. Losing access to opioid

pain management may reduce chronic pain patients’ work output, and harm overall functionality,

freedom from suffering, life satisfaction, and happiness.

7 Empirical Analysis: Quantifying Welfare Tradeoffs of Reducing Opi-

oid Use

I have documented four main effects of introducing a Prescription Drug Monitoring Program. First,

opioid prescribing declines broadly, affecting both acute and chronic prescribing. Second, opioid-

related harms are reduced, specifically, rates of opioid use disorder and opioid overdose deaths.

Third, substitute spending on alternative (and more expensive) inpatient and outpatient medical

care increases. Finally, days missed for short-term disabled and injured workers increase.

7.1 Distributional concerns

First, I consider what my estimates suggest about the private welfare tradeoffs facing pain patients.

As discussed above, there is controversy in the medical and public health communities over how to

best understand opioid abuse and opioid harms. Some practitioners believe that opioids can be used

safely by individuals with legitimate medical need, and opioid abuse is primarily a result of diversion

and theft from the legitimate medical care system. However, an emerging alternative viewpoint

is that widespread legitimate medical opioid use is the primary driver of opioid abuse, addiction,

overdose, and death – that the medical care system is producing “iatrogenic addiction” and is thus

largely responsible for opioid-related harms.

If the first story dominates, there would be a tradeoff in the incidence of costs and benefits of

reduced overall access to opioids, from the perspective of social welfare. If we reduce access to opi-

oids to people in need, their welfare may go down as they are unable to work and as they substitute

towards alternate, possibly less effective, pain management. The benefits of regulation accrue to the

individuals who are less able to access diverted drugs, and consequently are less likely to experience

addiction and death. If the second story dominates, pain patients are experiencing both the costs of

regulation, in terms of lost work and functionality, and the benefits, in that they themselves are less

likely to be come addicted, overdose, and die.

An additional nuance comes in distinguishing the welfare tradeoffs of acute prescribing, which

may be different than prescribing for chronic pain. While acute prescribing has typically been con-

sidered less likely to lead to the development of opioid use disorder than long-term opioid therapy,

it is also potentailly less beneficial from a welfare perspective than prescribing for long-term chronic
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pain.

To address this, I first directly consider the impact of the reduction in opioid prescribing for the

group who has the most documented harms: the chronic pain cohort. In Table 5, columns (2) and

(3), I consider the rate of opioid use disorder episodes in the full sample excluding the chronic pain

sample, compared to the chronic pain sample. Strikingly, despite much higher baseline risks of opioid

use disorder in the chronic pain sample, the relative reduction in opioid use disorder risk is more

than double in magnitude for the non-chronic pain cohort than the chronic pain cohort, and the

point estimate for the chronic pain sample is not distinguishable from zero. As reported in Table

10 (and considered alongside Table 8), both groups saw declines in both probability of receiving a

prescription and in overall prescribed volume. The non-chronic pain sample could be benefiting

from reduced acute prescribing or from reduced diversion of opioids that were not prescribed to

them, either of which might reduce rates of opioid abuse in this group. In contrast, the benefits to the

chronic pain sample specifically are decidedly unclear, especially in context of the apparent costs in

terms of increased pain and loss of work productivity. Benefits in the form of reductions in opioid use

disorder appear to be largely accruing to the non-chronic pain cohort, while costs appear to mostly

accrue to the chronic pain cohort.

In Tables 10 and 11, I provide additional suggestive evidence. I disaggregate prescribing re-

sults and overdose deaths according to demographic variables, including sex, age group, urban-

icity, and available class indicators. (I utilize coarse employment variables in Marketscan, includ-

ing union/non-union and salaried/hourly, and education variables in the CDC death data.) While

many of the estimates are noisy, especially for overdose deaths, prescribing restrictions appear to hit

groups that are older, geographically diverse across urban and rural areas, and more male, whereas

opioid overdose deaths are averted in groups that are relatively younger, more urban, and more

female. While class indicators are not directly comparable, prescribing restrictions and overdose

deaths averted appear to both be concentrated in groups with lower socioeconomic status markers:

blue-collar workers in the prescribing data and less-educated groups in the overdose deaths data.

Taken together these results suggest that the reduction in opioid prescribing brought about by

heightened opioid regulations has had important social benefits, but has also exerted disparate im-

pacts on certain groups, namely individuals suffering from chronic pain, who bear most of the costs

and accrue relatively few benefits.

7.2 Overall welfare

Finally, I use my results on prescribing, opioid abuse and overdoses, substitute medical spending,

and work output to undertake a broad social welfare calculation, attempting to integrate the results

to broadly quantify the costs and benefits of a blanket reduction in opioid prescribing. First, in the
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Marketscan claims data, I note that most of the costs and benefits to society of a reduction in opioid

prescribing are directly monetized. For the 340,660 patients in the pain cohort, I sum spending on

prescriptions (which includes the decrease in spending on opioids, as well as any changes in spend-

ing for other drugs) and inpatient and outpatient utilization, thus encompassing all observed medical

spending for the employer-sponsored insurance. I then add lost wages (through an imputed daily

wage based on the total indemnity payment for a claim), and medical payments under workers’ com-

pensation, and thus consider the change in total spending on healthcare and lost wages, post-PDMP.

The result of this exercise is found in Table 9. There is a 4.5% increase in total costs, and the mean total

cost for this group is $3,920 per quarter, so this increase represents about $177 in increased spending

per quarter for these enrollees. Assuming the Marketscan dataset represents the population of em-

ployees with employer-provided health insurance as discussed in Section 3, these 340,660 individuals

represent roughly 11.6 million people nationally, and an increase in spending of $8.2 billion annually

for their health care and lost wages.47

These costs are traded off against the value of an 8.2% overall reduction in opioid and heroin

overdose deaths; as discussed in Section 5.2, or 8,000 to 13,000 deaths averted over 13 years. To

make a rough comparison, I employ a figure for the Value of a Statistical Life (VSL) of $7.4 million;

this implies the benefits in lives saved according to this metric are approximately $4.6-$7.4 billion.

Further, in order to capture reductions in other costs to society of substance abuse and addiction, I

use estimates from other literature on rates of treatment admissions, emergency department visits

and incarcerations that are benchmarked against opioid overdose death rates as a proxy for levels

of underlying abuse. These estimates suggest that one overdose death represents approximately 10

treatment admissions and 32 emergency department visits, and incarceration costs per opioid user

are estimated to be approximately 3 times hospital and ED costs (Center for Integrated Behavioral

Health Policy, 2011; Kassed, Levit and Hambrick, 2007; HCCI, 2013). As such, my estimates of 615-

1000 deaths averted per year suggest 6,150-10,000 treatment admissions were prevented at an average

cost of $7,230 per admission. This adds up to $44-72 million. Similarly, there are approximately

32 fewer emergency department visits for every overdose death, so 20,000-32,000 ED visits were

prevented at an average cost per ED visit of $1,200. This figure totals to $24-38 million. Finally,

incarceration costs per user, estimated at approximately 3 times hospital and ED costs, total to $72-

115 million. In total, these additional considerations add $140-$225 million, and the total benefits

from reduced opioid addiction, overdose, and death can thus be roughly valued at $4.8-7.6 billion.

47Note that the last line of Table 9 contains the implied increase in costs if I were to consider each subsample indepen-
dently. Though the point estimate is noisily estimated due to the large numbers of individuals who have inpatient and
outpatient spending that are not affected by a reduction in opioids, the estimate of $10.9 billion for all 4,944,255 enrollees in
Column (1) is reasonably close to the estimate for the combined sample enrollees in Column (2), indicating that my chronic
pain sample may mostly if not entirely capture the individuals in the Marketscan dataset who have costly needs for pain
management.
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This is a smaller figure, but on the same order of magnitude, as the $8.2-$10.9 billion figure for costs

derived above.

The above two numbers are subject to a number of major limitations. Costs may be underesti-

mated for many reasons. First, I calculate costs of restricting opioids based on a subpopulation that is

most in need of pain management; I exclude the lost work of people in acute (temporary) pain, and all

other individuals who need pain management but do not fall into my group of predictive enrollees.

Second, I do not measure lost work output for any individuals other than those injured in workers’

compensation or on short-term disability. Third, I cannot observe the direct psychological costs of

increased pain. As explored in Case and Deaton (2015a) and Case and Deaton (2015b), increasing

pain among certain subsets of the US population, especially middle-aged white men, is associated

with increased distress, declining mental health, and increased mortality, including suicide.

Benefits of increased regulation may also be underestimated. Costs to society of drug abuse,

addiction, overdose, and death accrue in many forms, such as increased need for family services.

There are also non-monetary costs in the form of suffering by individuals with opioid use disorder,

their families, and their community.

8 Conclusion

This study exploits a natural policy experiment, state-level variation in the timing of the introduc-

tion of Prescription Drug Monitoring Programs, to examine the costs and benefits of reducing access

to opioids. The findings of this study are several. First, PDMPs, an increasingly important pol-

icy lever for reducing access to opioids, do indeed reduce the use of opioids, and achieve major

policy successes in reducing opioid abuse and opioid overdose deaths. However, they have had

several unintended consequences. Pain management is altered – as access to prescription opioids is

curtailed, chronic pain patients substitute towards alternate and more-costly forms of medical pain

management. Functionality and ability to work decline: days absent for injured and disabled work-

ers increase, creating clear welfare losses for those individuals, and suggesting that other unobserved

welfare losses attributable to losing access to pain management (in terms of functionality and overall

life satisfaction) are also likely.

Back-of-the-envelope calculations suggest that the regulation of prescription opioids involves

costs and benefits that are both large: welfare losses from a crackdown on opioids are on the or-

der of $8.2–$10.9 billion in increased medical spending and lost wages, whereas welfare gains are on

the order of $4.8–$7.6 billion from reduced opioid use disorder, overdose, and death.
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Magdalena Cerdá. 2018. “Association Between Prescription Drug Monitoring Programs and Non-
fatal and Fatal Drug Overdoses: A Systematic Review.” Annals of Internal Medicine, 168(11): 783–
790.

Franco, Armando, Zachary Wagner, and Christopher Whaley. 2019. “Doped up or Dropped Out:
The Effects of Opioid Use on Workplace Absences.” Working Paper.

Franklin, Gary M., Bert D. Stover, Judith A. Turner, Deborah Fulton-Kehoe, Thomas M. Wick-
izer, and Disability Risk Identification Study Cohort. 2008. “Early Opioid Prescription and Sub-
sequent Disability among Workers with Back Injuries: The Disability Risk Identification Study
Cohort.” Spine, 33(2): 199–204.

Frieden, Thomas R., and Debra Houry. 2016. “Reducing the Risks of Relief – The CDC Opioid-
Prescribing Guideline.” New England Journal of Medicine, 374(16): 1501–1504.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2009. The Elements of Statistical Learning. .
Second ed., Springer, Berlin:Springer Series in Statistics.

Furlan, Andrea D., Juan A. Sandoval, Angela Mailis-Gagnon, and Eldon Tunks. 2006. “Opioids
for Chronic Noncancer Pain: A Meta-Analysis of Effectiveness and Side Effects.” CMAJ: Canadian
Medical Association Journal, 174(11): 1589–1594.

Garthwaite, Craig L. 2012. “The Economic Benefits of Pharmaceutical Innovations: The Case of Cox-2
Inhibitors.” American Economic Journal: Applied Economics, 4(3): 116–37.

Gleason, Rae Marie, Kenneth L. Kirsh, Steven D. Passik, and Jan F. Chambers. 2014. “Current
Access to Opioids: Survey of Chronic Pain Patients.” Practical Pain Management, 14(2).

Goodman-Bacon, Andrew. 2018. “Difference-in-Differences with Variation in Treatment Timing.”
National Bureau of Economic Research w25018, Cambridge, MA.

Goodman-Bacon, Andrew. 2019. “So You’ve Been Told to Do My Difference-in-Differences Thing: A
Guide.”

Griffin, Beth Ann, Megan Schuler, Elizabeth Stuart, Stephen Patrick, Elizabeth McNeer, Rosanna
Smart, David Powell, Bradley Stein, Terry Schell, and Rosalie Liccardo Pacula. 2020. “Variation
in Performance of Commonly Used Statistical Methods for Estimating Effectiveness of State-Level
Opioid Policies on Opioid-Related Mortality.” National Bureau of Economic Research w27029,
Cambridge, MA.

Gross, Douglas P., Brian Stephens, Yagesh Bhambhani, Mark Haykowsky, Geoff P. Bostick, and
Saifudin Rashiq. 2009. “Opioid Prescriptions in Canadian Workers’ Compensation Claimants:
Prescription Trends and Associations between Early Prescription and Future Recovery.” Spine,
34(5): 525–531.

Hackbarth, Glenn, Jon Christianson, and Mark Miller. 2015. “Polypharmacy and Opioid Use
among Medicare Part D Enrollees.” In Report to the Congress: Medicare and the Health Care Deliv-
ery System. 117–138. Medicare Payment Advisory Commission.

HCCI. 2013. “Mental Health-Substance Use Services in Hospitals Up after Parity Law, Finds New
Report.” Health Care Cost Institute.

Hoffman, Jan. 2016. “Patients in Pain, and a Doctor Who Must Limit Drugs.” The New York Times.

39



Horwitz, Jill R., Corey Davis, Lynn McClelland, Rebecca Fordon, and Ellen Meara. 2020. “The
Importance of Data Source in Prescription Drug Monitoring Program Research.” Health Services
Research, 1475–6773.13548.

Jones, Christopher M., Leonard J. Paulozzi, and Karin A. Mack. 2014. “Sources of Prescription Opi-
oid Pain Relievers by Frequency of Past-Year Nonmedical Use: United States, 2008-2011.” JAMA
Internal Medicine, 174(5): 802–803.

Kaplovitch, Eric, Tara Gomes, Ximena Camacho, Irfan A. Dhalla, Muhammad M. Mamdani, and
David N. Juurlink. 2015. “Sex Differences in Dose Escalation and Overdose Death during Chronic
Opioid Therapy: A Population-Based Cohort Study.” PLoS ONE, 10(8): e0134550.

Kasich, John. 2015. “Empowering Prescribers & Pharmacists to Prevent Opiate Abuse.”

Kassed, Cheryl, Katharine Levit, and Megan Hambrick. 2007. “Hospitalizations Related to Drug
Abuse, 2005.” Healthcare Cost and Utilization Project (HCUP).

Kolodny, Andrew, David T. Courtwright, Catherine S. Hwang, Peter Kreiner, John L. Eadie,
Thomas W. Clark, and G. Caleb Alexander. 2015. “The Prescription Opioid and Heroin Crisis: A
Public Health Approach to an Epidemic of Addiction.” Annual Review of Public Health, 36(1): 559–
574.

Krebs, Erin E., Amy Gravely, Sean Nugent, Agnes C. Jensen, Beth DeRonne, Elizabeth S. Gold-
smith, Kurt Kroenke, Matthew J. Bair, and Siamak Noorbaloochi. 2018. “Effect of Opioid vs
Nonopioid Medications on Pain-Related Function in Patients With Chronic Back Pain or Hip or
Knee Osteoarthritis Pain: The SPACE Randomized Clinical Trial.” JAMA, 319(9): 872–882.

Krueger, Alan B. 2017. “Where Have All the Workers Gone?: An Inquiry into the Decline of the U.S.
Labor Force Participation Rate.” Brookings Papers on Economic Activity, 2017(2): 1–87.

Maclean, Johanna Catherine, Justine Mallatt, Christopher J. Ruhm, and Kosali Simon. 2020. “Eco-
nomic Studies on the Opioid Crisis: A Review.” National Bureau of Economic Research Working
Paper 28067.

Madara, James L. 2015. “AMA Letter to CDC.”

Madara, James L. 2020. “AMA Urges CDC to Revise Opioid Prescribing Guideline.”

Mahmud, Mohammed A., Barbara S. Webster, Theodore K. Courtney, Simon Matz, James A. Tacci,
and David C. Steffens. 2000. “Clinical Management and the Duration of Disability for Work-
Related Low Back Pain.” Journal of Occupational and Environmental Medicine / American College of
Occupational and Environmental Medicine, 42(12): 1178–1187.

Manchikanti, Laxmaiah, Ricardo Vallejo, Kavita N. Manchikanti, Ramsin M. Benyamin, Sukdeb
Datta, and Paul J. Christo. 2011. “Effectiveness of Long-Term Opioid Therapy for Chronic Non-
Cancer Pain.” Pain Physician, 14(2): E133–156.

McCance-Katz, Elinore, Andrew Kolodny, Michael R. Von Korff, and Jane C. Ballantyne. 2012.
“Why the FDA Should Revise Labels on Opioid Analgesics.” Medscape Neurology.

McCarberg, Bill. 2016. “Re: Docket No. CDC-2015-0112; Proposed 2016 Guideline for Prescribing
Opioids for Chronic Pain.”

McQuay, Henry. 1999. “Opioids in Pain Management.” The Lancet, 353(9171): 2229–2232.

40



Meinhofer, Angelica. 2015. “The War on Drugs: Estimating the Effect of Prescription Drug Supply-
Side Interventions.” Brown University Job Market Paper.
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Tables

Table 1: Summary Statistics: ARCOS

MME per Resident per Quarter Mean Standard Minimum Median Maximum
Deviation

Oxycodone 58.8 31.3 12.4 53.5 284.8

Other Schedule II :
Fentanyl 26.9 8.2 8.1 26.8 52.5
Hydromorphone 3.7 2.1 0.4 3.2 16.3
Meperidine 1.2 0.9 0.1 0.9 5.3
Morphine 16.1 6.9 4.4 15.0 41.4

Total Schedule II 106.7 42.7 31.1 101.7 343.8

Hydrocodone 23.2 14.1 3.3 20.5 84.8

Other Schedule III-V :
Codeine 1.4 0.4 0.6 1.3 4.5

Total Schedule III-V 24.6 14.0 4.1 22.0 86.3

Notes: Source is Drug Enforcement Administration Automated Reports and Consolidated Orders
System (ARCOS). Summary statistics for 38 states in sample depicted in Table A1. Data spans years
2001 to 2013. Quantities converted to morphine equivalents using a conversion factor, morphine
milligram equivalents, or MME (Centers for Disease Control, 2018). Sample: 1,976 state-quarters.
Oxycodone is classified as Schedule II, while hydrocodone was classified as Schedule III during this
period. Schedule II and III drugs are both defined as having “a currently accepted medical use in
treatment in the United States,” and a “potential for abuse and dependence.” Schedule III drugs are
distinguished from Schedule II as less abusable, and less likely to produce physical and
psychological dependence. Schedule III drugs are easier to prescribe and obtain.
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Table 2: Summary Statistics: Marketscan

Panel A: Percentage of enrollees by year with prescription for opioid pain relievers

Year Oxycodone Hydrocodone Schedule II Schedule III & All Total
excluding below excluding opioids enrollees
oxycodone hydrocodone

2005 6.0 15.9 1.0 9.6 25.3 822,167
2006 5.8 15.4 0.9 8.6 24.2 1,057,487
2007 5.9 15.7 0.9 8.6 24.5 1,221,408
2008 6.2 15.7 0.8 9.7 25.4 1,579,009
2009 6.5 15.6 0.8 9.7 25.6 2,079,528
2010 6.4 14.9 0.8 8.7 24.2 2,527,267
2011 6.5 15.3 0.9 8.1 24.3 2,686,926
2012 6.2 14.7 0.8 7.8 23.5 2,774,767

All Years 14.0 29.4 2.0 18.4 41.9 4,944,277

Panel B: Dosage by time elapsed in opioid therapy episode

Days elapsed Hydrocodone Oxycodone
(average MME per day in script) (average MME per day in script)

Days 0 to 15 33.3 39.6
Days 15 to 30 27.8 40.2
Days 30 to 60 28.4 45.6
Days 60 to 90 31.1 56.3
Days 90 to 120 32.8 65.1
Days 120 to 150 33.7 69.3
Days 150 to 180 34.3 73.3
Days 180 to 365 36.0 83.0
Days 365 and after 37.9 103.4

Notes: Panel A displays the percent of enrollees in 38-state sample with an oxycodone,
hydrocodone, etc. prescription in each year, as well as over all years spent in the Marketscan
prescription drug claims claims dataset. Panel B displays the average MME prescribed for
prescriptions that are earlier or later in an opioid therapy episode, where an opioid therapy episode
is as defined in the text.
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Table 3: The Effect of PDMP Introduction on all Opioids Distributed (ARCOS)

(1) (2) (3) (4)
Total Oxycodone Total Schedule II Hydrocodone

Schedule II excl. Oxycodone
1(PDMP) BC -11.15∗∗ -10.68∗∗ -0.471 2.466∗

(5.036) (4.858) (1.102) (1.412)

Controls:
State Controls Y Y Y Y
State FE Y Y Y Y
Quarter FE Y Y Y Y

Clusters 38 38 38 38
Observations 1,976 1,976 1,976 1,976

Mean 106.7 58.8 47.9 23.2

Notes: The table reports estimates of the impact of the introduction of a PDMP on all opioids
distributed, as monitored by the ARCOS system, estimated according to Equation 2. The dependent
variables are the sum of Morphine Milligram Equivalent (MME) per resident per quarter, for four
categories of opioids. Column (1) represents the impact on all Schedule II drugs: oxycodone,
fentanyl, hydromorphone, meperidine, and morphine. Column (2) is for oxycodone only; column
(3) is all other Schedule II drugs, and column (4) is hydrocodone, the highest-volume opioid below
Schedule II. State controls include state-level population, unemployment rate, and percentage of
population over 60. Robust standard errors, clustered at the state level, in parentheses.
* ? < 0.10, ** ? < 0.05, *** ? < 0.01
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Table 4: The Effect of PDMP Introduction on Overdose Deaths (CDC Vital Statistics)

(1) (2)
Opioid Analgesic All Opioid Overdose

Overdose Deaths (T40.2) Deaths (T40.1-T40.4,T40.6)
1(PDMP) BC -0.108∗∗ -0.0816

(0.0439) (0.0536)

Controls:
County Controls Y Y
County FE Y Y
Quarter FE Y Y

Clusters 38 38
Observations 117,856 117,856
Counties 2,267 2,267

Mean 0.62 1.37

Notes: The table reports estimates of the impact of the introduction of a PDMP on opioid overdose
deaths. Each column reports the dynamic ATT for the impact of PDMP introduction, as described in
Section 5.2 and Appendix C. Dependent variables are ln(deaths+ 1) in a county for a given quarter.
Drug overdoses are identified using underlying cause of death codes X40-X44, X60-X64, X85, and
Y10-Y14. “Opioid Analgesic Overdoes Deaths” are defined as deaths that list multiple cause of
Death code T40.2. “All Opioid Overdose Deaths” are defined as deaths with multiple cause of death
codes T40.1, T40.2, T40.3, T40.4 and/or T40.6; categories are described above in Section 3.3. The
baseline specification includes county-level controls for the natural log of population,
unemployment rate, and percentage of population over 60, and observations are weighted
according to county population. Means are unweighted and listed in levels (count of deaths in a
county-quarter). Robust standard errors, clustered at the state level, in parentheses.
* ? < 0.10, ** ? < 0.05, *** ? < 0.01
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Table 5: The Effect of PDMP Introduction on Episodes of Abuse, for all enrollees and chronic
pain patients (Marketscan)

(1) (2) (3)
1(PDMP) BC -0.0606∗∗ -0.0314 -0.0842∗∗

(0.0273) (0.0304) (0.0415)

Sample Full Chronic Full excl.
pain chronic pain

Model Logistic Logistic Logistic

Individual Controls Y Y Y
Individual FE N N N
Entry-cohort FE Y Y Y
Quarter FE Y Y Y

Observations 53,364,705 5,824,330 47,194,901
Clusters 38 38 38
Individuals 4,933,017 337,955 4,573,291

Mean 0.00156 0.00763 0.000819

Notes: Models are estimated according to Equation 6. The dependent variable is a binary outcome
variable indicating an episode of abuse identified in Marketscan, and construction is described in
Section 5.3. The chronic pain patient sample is selected as described in Section 3.2.1 and Appendix
E. Means are in levels and reveal the baseline opioid use disorder rate in the full, chronic pain, and
non-chronic pain sample. Robust standard errors, clustered at the state level, in parentheses.
* ? < 0.10, ** ? < 0.05, *** ? < 0.01
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Table 6: The Effect of PDMP Introduction on Schedule II Opioid Prescriptions Filled (Mar-
ketscan)

Quantity Probability

(1) (2) (3) (4) (5)
1(PDMP) BC -0.00482∗∗∗ -0.0898∗∗ -6.431∗∗ -0.000562∗∗ -0.0226∗∗

(0.00160) (0.0432) (2.708) (0.000226) (0.00978)

Model Log-linear PPML Linear LPM Logistic

Observations 53,520,024 53,520,024 53,520,024 53,520,024 53,520,024
Clusters 38 38 38 38 38
Individuals 4,944,277 4,944,277 4,944,277 4,944,277 4,944,277

Individual Controls Y Y Y Y Y
Individual FE Y N Y Y N
Entry-cohort FE N Y N N Y
Quarter FE Y Y Y Y Y

Mean 0.155 60.99 60.99 0.0247 0.0247

Notes: Models are estimated according to Equation 8. “Schedule II opioid prescriptions” in the
Marketscan sample are filled prescription claims for oxycodone, fentanyl, hydromorphone,
meperidine, and morphine. For Model (1), the dependent variable is a concave transformation of
Morphine Milligram Equivalent (MME) for Schedule II drugs per quarter for each individual
enrollee, ln(""� + 1). Model (2) is a Poisson pseudo-maximum likelihood regression for MME of
Schedule II opioids prescribed for each individual enrollee in a given quarter, implemented using
the ppmlhdfe package in Stata, and Model (3) is an OLS regression for MME of opioids prescribed
(not transformed). Models (4) and (5) are probability models capturing the extensive margin of
prescribing, using a binary outcome variable for whether an individual was prescribed a Schedule II
opioid in a given quarter. Each specification includes individual or entry-cohort fixed effects and
quarter fixed effects, and individual-level controls (age, employment type/status [salaried, union,
full time, etc.], and industry [oil and gas, manufacturing, etc.]). Robust standard errors, clustered at
the state level, in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01
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Table 7: The Effect of PDMP Introduction on the Distribution of Opioid Prescribing (Marketscan)

(1) (2) (3)
Panel A: New Schedule II opioid prescription filled in quarter

(A-1) Initial Schedule II prescription -0.000262∗∗ (0.000117) -0.0191∗∗ (0.00914) 0.0165

Panel B: Enrollee dispensed amount between thresholds in quarter

(B-1) No Schedule II opioids 0.000562∗∗ (0.000226) 0.0226∗∗ (0.00978) 0.975
(B-2) > 0 to 224 MME -0.0000453 (0.0000537) -0.0160 (0.0122) 0.00594
(B-3) 225 to 1,799 MME -0.000115 (0.000153) -0.00769 (0.0113) 0.0138
(B-4) 1,800 to 4,499 MME -0.000104 (0.0000632) -0.0281 (0.0192) 0.00204
(B-5) 4,500 to 8,099 MME -0.0000779∗∗ (0.0000368) -0.0616∗∗ (0.0279) 0.000996
(B-6) >8,100 MME -0.000221∗∗∗ (0.0000767) -0.109∗∗ (0.0426) 0.00189

Model LPM Logistic Means

Individual Controls Y Y
Individual FE Y N
Entry-cohort FE N Y
Quarter FE Y Y

Notes: Each model estimates, according to Equation 8, the probability that in a given quarter, an enrollee in the Marketscan sample falls
into one of the above categories after the introduction of a PDMP, reporting the point estimate on 1(PDMP) BC. In Panel A, the dependent
variable, “initial Schedule II prescription,” is a binary variable indicating that an enrollee has a prescription that was not preceded by
another Schedule II prescription in the two previous quarters. In Panel B, the dependent variable in each panel is a binary indicator for
whether an enrollee was prescribed an amount between the listed thresholds in a quarter. Thresholds are set based on the CDC
prescribing guidelines discussed in Footnote 2. Panel B-2 represents dosing that is likely to be an acute prescription. Panel B-3 includes
dosing above the acute threshold, and up to a maximum of 20 MME/day for the quarter, or a low chronic dose. Panel B-4 includes dosing
between 20 and 50 MME per day, where 50 MME per day is the CDC’s recommended maximum dose for most chronic prescriptions.
Panel B-5 includes dosing between the 50 MME per day guideline and the 90 MME per day recommended maximum for all chronic
prescriptions. Panel B-6 represents dosing exceeding the CDC’s recommended 90 MME daily maximum. Column (3) reports the mean of
each binary dependent variable. For Columns (1) and (2), Panel (A), the sample comprises 4,359,108 individuals, 38 states, and 44,909,146
observations; for Column (1), Panel (B), the sample is the same as in Table 6. For Column (2), Panel (B), the sample varies slightly in each
specification from 53,473,830 to 53,520,024 observations, as a few small entry-cohorts do not have any positive observations. Robust
standard errors, clustered at the state level, in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01



Table 8: The Effect of PDMP Introduction on Opioid Prescribing, Inpatient and Outpatient Spending, and Work Output for all
enrollees and chronic pain patients (Marketscan)

All Enrollees Chronic Pain Sample

(1) (2) (3) (4) (5) (6)
ln(MME ln(spending days ln(MME ln(spending days

+1) +1) absent +1) +1) absent
1(PDMP) BC -0.00482∗∗∗ 0.0197 0.0512∗ -0.0145∗∗ 0.0609∗∗ 0.0622∗∗

(0.00160) (0.0179) (0.0306) ((0.00712) (0.0232) (0.0313)

Model Log-linear Log-linear PPML Log-linear Log-linear PPML

Individual Controls Y Y Y Y Y Y
Individual FE Y Y N Y Y N
Entry-cohort FE N N Y N N Y
Quarter FE Y Y Y Y Y Y

Observations 53,520,024 53,520,057 53,520,035 5,870,917 5,870,917 5,870,916
Clusters 38 38 38 38 38 38
Individuals 4,944,277 4,944,277 4,944,277 340,660 340,660 340,660

Mean 60.99 $899.97 0.732 318.0 $2,987.82 3.1

Notes: Models are estimated according to Equation 8. The chronic pain sample is constructed as described in Section 3.2.1 and Appendix
E. The dependent variables are ln(MME schedule II opioids+ 1), ln(inpatient and outpatient spending+ 1), and count of days absent
under workers compensation and short term disability, per quarter for each enrollee. Robust standard errors, clustered at the state level,
in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01



Table 9: The Effect of PDMP Introduction on Total Costs (Inpatient, Outpatient, Drug, Lost
Wages, WC Medical) for all enrollees and chronic pain patients (Marketscan)

(1) (2)
1(PDMP) BC 0.0133 0.0451∗∗

(0.0145) (0.0195)

Sample Full Chronic
Pain

Individual Controls Y Y
Individual FE Y Y
Quarter FE Y Y

Observations 53,518,181 5,870,689
Clusters 38 38
Individuals 4,944,255 340,660

Mean $1,215.70 $3,919.53

Implied increased costs (billions) $10.9 $8.2

Notes: Models are estimated according to Equation 8. The chronic pain sample is constructed as
described in Section 3.2.1 and Appendix E. Dependent variable is ln(total inpatient spending,
outpatient spending, drug spending, imputed lost wages under workers’ compensation and
short-term disability, and imputed medical costs accrued to workers’ compensation insurer +1).
Means are listed in levels ($). Implied total costs in billions are calculated as described in Section 7.2.
Robust standard errors, clustered at the state level, in parentheses.
* ? < 0.10, ** ? < 0.05, *** ? < 0.01
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Table 10: The Effect of PDMP Introduction on Opioid Prescribing, by Demographic Characteristics (Marketscan)

(1) (2) (3)
Pain conditions

Chronic pain sample -0.0197∗ (0.0108) 340,660 0.0817
Full sample excl. chronic pain -0.0222∗∗ (0.0101) 4,603,617 0.0176

Gender
Male -0.0327∗∗∗ (0.00847) 2,831,565 0.0213
Female -0.00825 (0.0138) 2,112,747 0.0297

Age
17-28 -0.00951 (0.0195) 1,133,700 0.0172
29-40 -0.0121 (0.0102) 1,849,690 0.0231
41-52 -0.0309∗∗∗ (0.0113) 1,854,040 0.0264
53-64 -0.0266∗∗ (0.0118) 1,096,376 0.0290

Employment
Union/Hourly/Manufacturing -0.0346∗∗∗ (0.0130) 3,189,149 0.0257
All others 0.00570 (0.0110) 2,054,485 0.0229

Urbanicity
Urban (in MSA) -0.0250∗∗ (0.0101) 4,509,599 0.0247
Rural -0.0252 (0.0191) 480,457 0.0241

Model Logistic Individuals Means

Individual Controls Y
Individual FE N
Entry-cohort FE Y
Quarter FE Y

Notes: Each model estimates, according to Equation 8, the probability that in a given quarter, an enrollee in the Marketscan sample has an
opioid prescription after the introduction of a PDMP, reporting the point estimate on 1(PDMP) BC. Each specification is a logistic
regression run on a split sample selected based on the identified characteristic. The chronic pain sample is constructed as described in
Section 3.2.1 and Appendix E; all other samples are constructed based on the provided Marketscan demographic indicators. Robust
standard errors, clustered at the state level, in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01



Table 11: The Effect of PDMP Introduction on Opioid Overdose Deaths, by Demographic Characteristics (CDC Vital Statistics)

(1) (2)
Gender

Male -0.0633∗ (0.0332) 8.03
Female -0.139∗ (0.0749) 5.15

Age
17-28 -0.0611 (0.0537) 5.89
29-40 -0.110 (0.0748) 9.91
41-52 -0.0842 (0.0589) 14.03
53-64 -0.0487 (0.0410) 8.87

Education
No high school diploma -0.107 (0.0680) 12.75
High school but no 4-year college degree -0.140∗∗∗ (0.0066) 11.64
College or post-graduate degree -0.0148 (0.0502) 3.49

Urbanicity
Urban (in MSA) -0.126∗∗ (0.0570) 6.41
Rural -0.0122 (0.0230) 7.27

Model Log-linear Deaths per pop
per quarter

County Controls Y
County FE Y
Quarter FE Y

Notes: Each model reports the dynamic ATT for the impact of PDMP introduction, as described in Section 5.2 and Appendix C.
Dependent variables are ln(deaths with T40.2+ 1) in a county for a given quarter. The baseline specification includes county-level
controls for the natural log of population, unemployment rate, and percentage of population over 60, and observations are weighted
according to county population. Column (2) reports the opioid overdose death rate per capita for each demographic (measured from
2001-2013 in the 38-state sample). Robust standard errors, clustered at the state level, in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01



Figures

Figure 1: Opioids dispensed via pharmacies, hospitals, practitioners, etc., overlayed with opioid overdose deaths, from 2001-
2019

Notes: Source: Data extracted from Drug Enforcement Administration Automated Reports and Consolidated Ordering System (ARCOS)
reports. Figure depicts total kilograms of opioids dispensed in morphine equivalents, and the proportion of that total accounted for by
oxycodone, hydrocodone, etc. Each opioid is converted to morphine equivalents using a conversion factor, morphine milligram
equivalents, or MME (Centers for Disease Control, 2018). Opioid overdose deaths are from CDC National Center for Health Statistics
Vital Statistics mortality records. Opioid overdose deaths are deaths with underlying cause of death code of X40-X44, X60-X64, X85, or
Y10-Y14 (indicating a drug overdose), and multiple causes of death codes of T40.0-T40.4 or T40.6 (which indicate opioids or heroin,
specifically, were listed on the death certificate).



Figure 2: Opioid Overdose Deaths, 2001-2018 (CDC Vital Statistics)

Notes: Source: CDC National Center for Health Statistics Vital Statistics records. This figure depicts the changing composition of opioid
overdose deaths over time. “Deaths listing oxycodone, hydrocodone, etc. only” are deaths only containing multiple cause of death code
T40.2, which includes oxycodone, hydrocodone, morphine, etc. “Deaths listing heroin or fentanyl only” contains any death listing T40.1
(heroin) or T40.4 (fentanyl or other synthetic opioids), or both, but not other opioids. “Deaths listing both oxycodone/hydrocodone and
heroin/fentanyl” are deaths listing both T40.2 and either T40.1 or T40.4. While opioiod overdose deaths related only to prescription
opioid pain relievers long drove total opioid overdose deaths, in recent years heroin, and then later, fentanyl, became the main driver.



Figure 3: The Effect of PDMP Introduction on all Schedule II Opioids Distributed (ARCOS)

Notes: ARCOS event study analogue of baseline specification for Schedule II opioids displayed in
Table 3, Model (1). The model is estimated according to Equation 1. Date of implementation is date
PDMP began prescription record collection, as described in Section 4.1. Robust standard errors
clustered at state level. Thin bars represent 95% confidence intervals and thick bars represent 90%
confidence intervals.
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Figure 4: The Effect of PDMP Introduction on Opioid Overdose Deaths (CDC Vital Statistics)

Notes: CDC event study, estimated according to Equation 3, for opioid overdose deaths linked to
semi-synthetic opioids such as oxycodone, hydrocodone, and morphine (identified by multiple
causes of death code T40.2). Estimated using an OLS log-linear model where the dependent variable
is ln(opioid [T40.2] overdose deaths in county + 1). The baseline specification includes controls for
the natural log of population, unemployment rate, and percentage of population over 60, and
observations are weighted according to county population. The results of this specification are
reproduced in Table B3. Robust standard errors clustered at state level. Thin bars represent 95%
confidence intervals and thick bars represent 90% confidence intervals.
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Figure 5: The Effect of PDMP Introduction on Episodes of Opioid Use Disorder (Marketscan)

Notes: Marketscan event study analogue for Model (1) in Table 5, estimated according to Equation
5. Includes the full sample of patients. Robust standard errors clustered at state level. Thin bars
represent 95% confidence intervals and thick bars represent 90% confidence intervals.
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Figure 6: The Effect of PDMP Introduction on Schedule II Opioids Dispensed (Marketscan)

Notes: Marketscan event study analogue for Model (1) in Table 6, estimated according to Equation
7. Includes the full sample of patients. Robust standard errors clustered at state level. Thin bars
represent 95% confidence intervals and thick bars represent 90% confidence intervals.
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Figure 7: The Effect of PDMP Introduction on Total Inpatient and Outpatient Spending
(Marketscan)

Notes: Marketscan event study analogue for Model (5) in Table 8, estimated according to Equation
7. The chronic pain sample is constructed as described in Section 3.2.1 and Appendix E. Robust
standard errors clustered at state level. Thin bars represent 95% confidence intervals and thick bars
represent 90% confidence intervals.
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Figure 8: The Effect of PDMP Introduction on Days Absent from Work (Marketscan)

Notes: Marketscan event study analogue for Model (6) in Table 8, estimated according to Equation
7. The chronic pain sample is constructed as described in Section 3.2.1 and Appendix E. Robust
standard errors clustered at state level. Thin bars represent 95% confidence intervals and thick bars
represent 90% confidence intervals.
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Figure 9: The Effect of PDMP Introduction on Total Costs (Marketscan)

Notes: Marketscan event study analogue for Model (2) in Table 9, estimated according to Equation
7. The chronic pain sample is constructed as described in Section 3.2.1 and Appendix E. Robust
standard errors clustered at state level. Thin bars represent 95% confidence intervals and thick bars
represent 90% confidence intervals.
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Appendix A Prescription Drug Monitoring Programs

Table A1: Dates of Implementation of State PDMP (Main Sample)

Wyoming Jan-2004 California Jan-2009 South Dakota Mar-2012
Maine Jan-2005 Louisiana Jan-2009 New Mexico Aug-2012
Mississippi Dec-2005 Iowa Mar-2009 Delaware Aug-2012
Virginia Jun-2006 Vermont Apr-2009 Montana Oct-2012
Oklahoma Jul-2006 Minnesota Apr-2010 Arkansas Mar-2013
Indiana Jan-2007 Massachusetts Aug-2010 Wisconsin May-2013
North Dakota Jan-2007 Kansas Apr-2011 Georgia Jul-2013
Alabama Apr-2007 Oregon Sep-2011 Maryland Jan-2014
North Carolina Oct-2007 Florida Oct-2011 Nebraska
Colorado Feb-2008 Ohio Oct-2011 Pennsylvania
South Carolina Jun-2008 Alaska Jan-2012 New Hampshire
Connecticut Jul-2008 New Jersey Jan-2012 Missouri
Arizona Dec-2008 Washington Jan-2012

Table A2: Year of Implementation of Early State Controlled Substances Monitoring

New York 1973
Texas 1989
Tennessee 1990
West Virginia 1995
Hawaii 1996
Utah 1997
Nevada 1997
Idaho 1998
Michigan 1998
Kentucky 1999
Illinois 1999
Rhode Island 2001

Notes: Source: National Alliance for Model State Drug Laws (NAMSDL).
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Figure A1: Date of Implementation of State PDMPs

Notes: Source: National Alliance for Model State Drug Laws (NAMSDL).



Figure A2: Grams Morphine Equivalent Distributed per Person in 38 Sample States versus
States with Early Controlled Substances Efforts

Panel A: MME oxycodone per resident per quarter
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Panel B: MME hydrocodone per resident per quarter
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38 states in sample 12 early effort states (pre−2002)

Notes: Source: DEA ARCOS.
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Appendix B Robustness of key results to alternate specifications

Table B1: The Effect of PDMP Introduction on Schedule II Opioids Distributed (ARCOS): Robustness

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1(PDMP) BC -11.15∗∗ -10.59∗∗ -12.10∗∗ -21.01∗ -8.053∗∗ -9.372∗ -10.78∗ -12.09∗∗ -7.670∗ -9.315 -8.131∗∗

(5.036) (5.096) (4.682) (10.56) (3.252) (5.259) (5.447) (5.359) (4.206) (5.606) (3.350)
Observations 1,976 1,976 1,976 1,976 1,924 1,976 1,872 1,872 2,340 1,716 1,976
Clusters 38 38 38 38 37 38 36 36 45 33 38
Mean 106.7 106.7 106.7 107.3 102.1 106.7 106.4 106.4 104.1 106.7 106.7
State controls Y N Y Y Y Y Y Y Y Y Y
State FE Y Y Y Y Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y Y Y Y Y
State linear trends N N Y N N N N N N N N
Population-weighted N N N Y Y N N N N N N
Excl. Florida N N N N Y N N N N N N
OH and NM recode N N N N N Y N N N N N
Drop OH and NM N N N N N N Y N N N N
Implement after 2005 N N N N N N N Y N N N
Implement after 1997 N N N N N N N N Y N N
Horwitz legal coding N N N N N N N N N Y N
DCDH’20 heterogeneity N N N N N N N N N N Y

Notes: This table displays robustness checks corresponding to the baseline ARCOS specification for Schedule II opioids found in Table 3.
State controls include population, unemployment rate, and percentage of population over 60. In Column (6), Ohio and New Mexico are
coded with the first NAMSDL date of implementation in the study period rather than the second. In column (10), I use the legal coding
from Horwitz et al. (2020) (date “Modern system operational”), while dropping all states that they indicate had an early PDMP that was
legislated and enacted prior to 2003. In column (11) I report the average effect of 16 quarters of dynamic treatment effects estimated using
the de Chaisemartin and D’Haultfœuille (2020) did multiplegt package, which computes unbiased and consistent estimators and is
robust to heterogeneous treatment effects. Robust standard errors, clustered at the state level, in parentheses.
* ? < 0.10, ** ? < 0.05, *** ? < 0.01



Table B2: Opioid overdose deaths (CDC Vital Statistics): Main results and robustness checks

(1) (2) (3) (4) (5) (6) (7)

Panel A: Two-way fixed effects model

1(PDMP) BC -0.0713 -0.0446 -0.0709 -0.0805 -0.0718 -0.0734∗ -0.0645
(0.0453) (0.0436) (0.0474) (0.0485) (0.0459) (0.0383) (0.0610)

Panel B: Dynamic ATT

-0.108∗∗ -0.0956∗ -0.0836∗∗ -0.0978∗∗ -0.109∗∗ -0.0906∗∗ -0.0671∗

(0.0439) (0.0519) (0.04037) (0.0483) (0.0404) (0.0429) (0.0358)

Observations 117,856 114,372 117,856 111,564 115,828 137,200 101,840
Clusters 38 37 38 36 36 45 33
Mean 0.62 0.56 0.62 0.60 0.62 0.61 0.51
Log-linear model Y Y Y Y Y Y Y
County controls Y Y Y Y Y Y Y
County FE Y Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y Y
Excl. Florida N Y N N N N N
OH and NM recode N N Y N N N N
Drop OH and NM N N N Y N N N
Implement after 2005 N N N N Y N N
Implement after 1997 N N N N N Y N
Horwitz legal coding N N N N N N Y

Notes: This table displays robustness of main results for overdose deaths due to semi-synthetic opioids (T40.2, oxycodone, hydrocodone,
morphine, etc.) displayed in Table 4 to alternate specifications. Panel A reports the standard two-way fixed effects model, estimated
according to Equation 3. Panel B reports the dynamic ATT for the impact of PDMP introduction, as described in Section 5.2 and Appendix
C. County controls include unemployment rate, the percentage of population over 60, and the natural log of population. Robust standard
errors, clustered at the state level, in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01



Table B3: Opioid overdose deaths (CDC Vital Statistics): Main results and robustness checks

(1) (2) (3) (4) (5) (6)

Panel A: Two-way fixed effects model

1(PDMP) BC -0.0713 -0.0658 -0.0224 -0.109 -0.0876 -0.877
(0.0453) (0.0466) (0.0454) (0.0722) (0.0553) (0.637)

Panel B: Dynamic ATT

-0.108∗∗ -0.104∗∗ -0.0807 -0.128∗∗ -1.035
(0.0439) (0.0442) (0.0510) (0.0558) (0.637)

Panel C: Dynamic treatment effects

4 years 0.0137 0.0122 0.0264 0.0272 0.0263 -0.0421
before (0.0322) (0.0316) (0.0450) (0.0621) (0.0385) (0.432)

3 years -0.0276 -0.0312 -0.0216 -0.0268 -0.0279 -0.336
before (0.0501) (0.0498) (0.0583) (0.0613) (0.0629) (0.432)

2 years 0.0133 0.0107 0.0155 0.0249 0.0210 0.111
before (0.0228) (0.0228) (0.0224) (0.0321) (0.0265) (0.251)

1 year 0 0 0 0 0 0
before (.) (.) (.) (.) (.) (.)

Year of -0.00592 -0.00433 0.00543 -0.0526 -0.00704 -0.339
implementation (0.0291) (0.0296) (0.0246) (0.0419) (0.0361) (0.360)

1 year -0.0828∗ -0.0779 -0.0819 -0.149∗∗ -0.0964 -1.080∗

after (0.0474) (0.0474) (0.0554) (0.0730) (0.0572) (0.632)

2 years -0.0995∗∗ -0.0922∗∗ -0.111∗∗ -0.183∗∗ -0.123∗∗ -1.388∗∗

after (0.0436) (0.0441) (0.0521) (0.0770) (0.0530) (0.633)

3 years -0.164∗∗∗ -0.154∗∗ -0.173∗ -0.228∗ -0.198∗∗∗ -1.645∗

after (0.0571) (0.0571) (0.0893) (0.117) (0.0703) (0.854)

4+ years -0.170∗∗ -0.156∗∗ -0.169∗ -0.201 -0.208∗∗ -1.213
after (0.0655) (0.0646) (0.0993) (0.130) (0.0824) (0.986)

Observations 117,856 117,856 117,856 100,864 117,856 117,856
Clusters 38 38 38 38 38 38
Mean 0.62 0.62 0.62 0.62 0.62 5.60
Log-linear model Y Y Y N N N
Poisson model N N N Y N N
arcsinh-linear model N N N N Y N
Linear model N N N N N Y
County controls Y N Y Y Y Y
County FE Y Y Y Y Y Y
Quarter FE Y Y Y Y Y Y
County linear trends N N Y N N N

Notes: This table displays robustness of the main CDC event study specification, displayed in
Figure 4 and estimated according to Equation 3, to alternate specifications. Panel A additionally
reports the standard two-way fixed effects estimator, estimated using Equation 4. Panel B reports
the dynamic ATT for the impact of PDMP introduction, as described in Section 5.2 and Appendix C.
County controls include unemployment rate, the percentage of population over 60, and the natural
log of population (for log-linear and arcsinh-linear models). The outcome variable for the linear
model is the county overdose death rate; the outcome variable for the PPML specification is count of
deaths. Robust standard errors, clustered at the state level, in parentheses.
* ? < 0.10, ** ? < 0.05, *** ? < 0.01



Table B4: The Effect of PDMP Introduction on Schedule II Opioids Dispensed (Marketscan): Robustness

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1(PDMP) BC -0.00482∗∗∗ -0.00485∗∗∗ -0.00522∗∗∗ -0.00368∗∗∗ -0.00433∗∗ -0.00405∗∗ -0.00455∗∗ -0.00491∗∗∗ -0.00272 -0.00265
(0.00160) (0.00151) (0.00175) (0.00126) (0.00173) (0.00174) (0.00169) (0.00161) (0.00228) (0.00199)

Observations 53,520,024 53,520,024 53,520,024 53,520,024 49,580,421 53,520,024 48,845,666 53,098,616 63,448,213 40,987,179
Clusters 38 38 38 38 37 38 36 36 44 33
Individuals 4,944,277 4,944,277 4,944,277 4,944,277 4,552,407 4,944,277 4,581,977 4,910,548 5,780,901 3,771,915
Individual controls Y N Y Y Y Y Y Y Y Y
Individual FE Y Y Y Y Y Y Y Y Y Y
Entry-cohort FE N N N N N N N N N N
Quarter FE Y Y Y Y Y Y Y Y Y Y
arcsinh-linear model N N Y N N N N N N N
State linear trends N N N Y N N N N N N
Excl. Florida N N N N Y N N N N N
OH and NM recode N N N N N Y N N N N
Drop OH and NM N N N N N N Y N N N
Implement after 2005 N N N N N N N Y N N
Implement after 1997 N N N N N N N N Y N
Horwitz legal coding N N N N N N N N N Y

Notes: This table displays robustness checks corresponding to the baseline Marketscan specification for Schedule II opioid prescribing
found in Table 6, Column (1). Individual controls include age, employment type/status [salaried, union, full time, etc.], and industry [oil
and gas, manufacturing, etc.]). In Column (6), Ohio and New Mexico are coded with the first NAMSDL date of implementation in the
study period rather than the second. In column (10), I use the legal coding from Horwitz et al. (2020) (date “Modern system operational”),
while dropping all states that they indicate had an early PDMP that was legislated and enacted prior to 2003. Robust standard errors,
clustered at the state level, in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01



Table B5: The Effect of PDMP Introduction on Takeup of Workers’ Compensation and Short-
Term Disability (Marketscan)

(1) (2) (3)
Whether worker Whether WC injury Whether worker
takes WC (0/1) results in days lost (0/1) takes disability (0/1)

1(PDMP) BC -0.000223 -0.000131 0.000170
(0.000308) (0.000708) (0.000450)

Individual Controls Y Y Y
Individual FE Y Y Y
Entry-cohort FE N N N
Quarter FE Y Y Y

Clusters 38 38 38
Observations 53,520,024 4,053,277 53,520,024
Individuals 4,944,277 218,667 4,944,277

Mean 0.005 0.019 0.014

Notes: Dependent variables are binary (0/1) for whether worker makes a workers’ compensation
(Model (1)) or short-term disability (Model (3)) claim, and binary (0/1) for whether a workers’
compensation injury results in days missed (Model (2)), estimated using a linear probability model.
Model 1 considers the full Marketscan sample, and is 1 if an enrollee makes a workers’
compensation claim under WC in the quarter. Model 2 considers the subsample of enrollees ever
injured under workers’ compensation, and is 1 if a worker makes a WC claim in the quarter which
ever results in days absent. Robust standard errors, clustered at the state level, in parentheses.
* ? < 0.10, ** ? < 0.05, *** ? < 0.01
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Appendix C Robustness of Two-Way Fixed Effects Estimators

Recent research has noted that in difference-in-differences specifications with heterogeneity in

treatment effects and variation in treatment timing (staggered adoption), the two-way fixed effects

(TWFE) estimator can be severely biased away from the parameter of interest (Goodman-Bacon,

2018; Borusyak and Jaravel, 2016; Callaway and Sant’Anna, 2020; Sun and Abraham, 2020; de

Chaisemartin and D’Haultfœuille, 2020). As discussed in Goodman-Bacon (2018), the TWFE

estimator is comprised of a weighted average of all possible two-by-two difference-in-difference

estimators – comparing earlier treated versus later treated as controls, later treated versus earlier

treated as controls, treated versus the always-treated, and treated versus the never-treated. The

static TWFE estimator (e.g., what I estimate above in Equations 2, 4, and 8) may contain “negative

weights” where the estimator is biased in the wrong direction by the use of already-treated units,

which may be experiencing dynamic treatment effects, as controls. Sun and Abraham (2020);

Callaway and Sant’Anna (2020) and de Chaisemartin and D’Haultfœuille (2020) consider these

concerns in the estimation of dynamic treatment effects as well – event studies where leads are used

to visualize the placebo time periods for parallel trends, and dynamic treatment effects are

visualized with lags, such as estimated above in Equations 1, 3, and 7.48

There are reasons to be concerned about this problem in some of my results. My

difference-in-differences design consists of a relatively long panel with variation in treatment

timing/staggered adoption. As documented in Table B1, later PDMP adopters appear to have

stronger implementations than earlier adopters, indicating heterogeneity in treatment effects, and

for some of my dynamic visualizations, such as Figure 4, the impact of PDMP introduction appears

to be growing over time. In some cases – namely, the opioid overdose deaths results, there is a

discrepancy between the magnitude of the dynamic treatment effects estimated using an

event-study specification, and the TWFE estimates, which in the opioid overdose deaths results are

quite fragile to choice of specification. (The ARCOS results and the Marketscan results are much

more stable and the TWFE point estimates typically reflect an approximate average of the dynamic

treatment effects.)

To check robustness of my results, I implement the DIDM estimator proposed in de

Chaisemartin and D’Haultfœuille (2020) using the Stata package did multiplegt, which estimates

all the 2x2 DiD comparisons for groups who switch to becoming treated, against those who remain

untreated during this period (i.e., estimates treatment effects using only “clean controls”), for my

top-line prescribing and overdose deaths results. I then estimate a specification with 16 quarters of

48As noted in Goodman-Bacon (2019), results from Sun and Abraham (2020) suggest that these bias concerns appear
more severe for the static rather than dynamic specifications, because the static specifications break down under a wider
variety of conditions; a paper that explores this in practice is Cengiz et al. (2019).
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leads (placebo estimators) and lags (dynamic treatment effects) to check robustness of the

event-study specifications of Equations 1 and 3. Subsequently, I compute a simple average

treatment effect from the estimated dynamic effects (lags),49 e.g., a “dynamic ATT,” which can be

contrasted to the TWFE estimator from Equations 2 and 4.

The dynamic results for ARCOS are presented in Figure C1 (left panel) alongside the original

TWFE event study specifications estimated according to Equation 1 (right panel). The shape of the

graphs and magnitude of the effect are very similar, indicating the dynamic TWFE specification is

robust to the bias problems described above and capture the parameters of interest. The dynamic

ATT estimate aggregating these effects for ARCOS is reported in Table B1, Column (11), and is

consistent with the TWFE estimates of the baseline specification and robustness checks.50,51

I conduct a similar exercise for the opioid overdose mortality results. The results are presented in

Figure C2 (left panel) alongside the TWFE event study specification estimated according to

Equation 3 (right panel). Once again, the shape of the graphs and magnitude of the effect are very

similar, indicating that the dynamic TWFE specification is robust to the bias problems described

above for the overdose deaths models as well.

The dynamic ATT is estimated to be -0.108 and is reported in Table B3, Panel (B), Column (1). It is

very similar to the simple mean of the dynamic effects in the standard TWFE dynamic specification,

as reported in Panel (C), Column (1), which is -0.104. While the TWFE estimator reported in Panel

(A), Column (1) is only moderately attenuated relative to the dynamic ATT, the battery of robustness

checks presented for the opioid overdose deaths results in Tables B2 and B3, presented across the

columns of Panels A and B in both tables, show the TWFE estimator is very fragile to specification

choice, while the dynamic ATT estimator is more robust and is closer to the average of the dynamic

lags reported in, e.g., Panel C. Throughout the paper, when I report a single point estimate for the

overdose death, I report the dynamic ATT rather than the TWFE point estimate; I also rely heavily

on the dynamic TWFE event-study specifications, which also appear to be more robust.

49Callaway and Sant’Anna (2020) explicitly explore the different ways of aggregating estimates into overall treatment
parameters; this approach is averaging across event-time.

50This point estimate is very close to a dynamic ATT of -8.6 calculated using the method proposed by Callaway and
Sant’Anna (2020), aggregating over event-time.

51I also conduct a Bacon decomposition of my top-line prescribing results from the ARCOS data, finding the later treated
vs. earlier control group’s contribution is nearly identical in magnitude to the overall estimated effect, further alleviating
concerns in this specification.
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Figure C1: Robustness for dynamic two-way fixed effects specifications robustness (ARCOS): Opioid prescribing

Notes: The left panel depicts 16 placebo estimators and 16 dynamic treatment effects estimated according to the procedure in de
Chaisemartin and D’Haultfœuille (2020), implemented using did multiplegt. The right panel reproduces the baseline event study
specification depicted in Figure 3. Robust standard errors clustered at state level. In the right panel, thin bars represent 95% confidence
intervals and thick bars represent 90% confidence intervals. In the left panel, bars represent 95% confidence intervals.



Figure C2: Robustness for dynamic two-way fixed effects specifications (CDC Vital Statistics): Opioid overdose deaths

Notes: The left panel depicts 16 placebo estimators and 16 dynamic treatment effects estimated according to the procedure in de
Chaisemartin and D’Haultfœuille (2020), implemented using did multiplegt. The right panel reproduces the baseline event study
specification depicted in Figure 4. Robust standard errors clustered at state level. In the right panel, thin bars represent 95% confidence
intervals and thick bars represent 90% confidence intervals. In the left panel, bars represent 95% confidence intervals.



Appendix D Selection into sample: Individual and cohort fixed effects

As discussed above in Section 3, the Marketscan data is not a representative national sample, but

rather is a convenience sample obtained from employers (meaning that individuals, whose

characteristics are likely to be correlated, enter or leave the sample in groups as their employers join

or exit). In Table D1, I consider robustness of the baseline specification to the inclusion of individual

fixed effects, which I utilize throughout my analysis. In column (2) I first show that there is a

meaningful change in the point estimate of the baseline specification with the full sample if

individual FE are not included and instead they are switched with state FE. I then consider the same

exercise with a balanced panel in individuals – individuals who are present in my data for 8 years

continuously (i.e., 2005-2012) – and estimating the treatment effect with and without individual

fixed effects, substituting individual FE with state FE. As shown in Table D1, the point estimates for

all these groups are consistently of the same magnitude, which is approximately 2/3 the magnitude

of the baseline point estimate for the full sample. That the inclusion of individual FE in this sample

does not materially affect the magnitude or significance of the point estimate compared to no

individual FE indicates that there are not individual-level unobserved characteristics that might bias

the estimate; the individual FE are serving in regressions on the full sample only to deal with

changes in the composition of the sample that might bias the estimate. I do not generally utilize this

smaller sample of continuous enrollees, but instead opt for the full sample with individual fixed

effects, because most individuals are present in my data only for a few years, so there is a

considerable cost in terms of power and also representativeness to excluding the modal employee.

(It also is likely that individuals employed continuously for many years are different (on

observables and unobservables) from employees employed for a shorter duration. They differ on

observable demographics – they are on average four years older (46 versus 42), more male (65%

versus 60%), are more likely to be in a union (23% versus 17%), and consume fewer opioids on

average (60.99 versus 53.03 MME per quarter).)

The ideal specification would be able to utilize include company fixed effects to control for

unobservable time invariant unobservables introduced by the shifting sample, but unfortunately

company identifiers are not provided in the Marketscan data. Instead I approximate company fixed

effects by grouping individuals into 380 cohorts based on the state and year they enter the sample.

Robustness to the use of entry-cohort fixed effects rather than individual fixed effects is depicted in

Table D1 and Figure D1; results are more precise but very similar. I utilize entry-cohort fixed effects

in models where a large number of high-dimensional individual fixed effects are undesirable,

namely logistic and Poisson pseudo-maximum likelihood models with many zeros in the dependent

variable, and in general do not find that my results meaningfully change when estimated using
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entry-cohort FE versus individual FE.
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Table D1: The Effect of PDMP Introduction on Schedule II Opioids Distributed: Full Sample
and Continuous Enrollees (2005-2012) With and Without Individual FE and Entry-cohort FE
(Marketscan)

(1) (2) (3) (4) (5)
1(PDMP) 8BC -0.00482∗∗∗ -0.00191 -0.00391 -0.00323 -0.00694∗∗∗

(0.00160) (0.00202) (0.00263) (0.00288) (0.00145)

Sample Full Full Continuously Continuously Full
enrolled enrolled

from 2005-2012 from 2005-2012

Individual Controls Y Y Y Y Y
Individual FE Y N Y N N
Entry-cohort FE N N N N Y
State FE N Y N Y N
Quarter FE Y Y Y Y Y

Observations 53,520,024 53,520,024 6,666,432 6,666,432 53,520,024
Clusters 38 38 38 38 38
Individuals 4,944,277 4,944,277 208,326 208,326 4,944,277

Mean 60.99 60.99 53.03 53.03 60.99

Notes: This table examines the robustness of the point estimates to the exclusion / inclusion of
individual fixed effects for the full sample, as well as a restricted subsample of enrollees that provide
a balanced panel in 8 years, as well as to entry-cohort fixed effects as alternate controls to individual
fixed effects. Dependent variable is ln(MME Sch. 2 + 1). Means are in levels (MME). Robust
standard errors, clustered at the state level, in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01
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Figure D1: The Effect of PDMP Introduction on Schedule II Opioids Distributed using Indi-
vidual versus Entry-cohort fixed effects (Marketscan)

Notes: The left panel depicts the baseline specification with 4,944,277 individual FE; the right panel
with 380 entry-cohort FE. Robust standard errors clustered at state level. Thin bars represent 95%
confidence intervals and thick bars represent 90% confidence intervals.
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Appendix E Selecting the chronic pain cohort

A large number of medical conditions can cause chronic pain, ranging from lower back injury to

cancer pain to migraines and nerve pain, and no one diagnosis or procedure code is used

consistently in claims data to indicate an individual that is suffering from chronic pain. In order to

identify a sample of likely chronic pain sufferers, I employ a predictive machine learning algorithm

that is able to flexibly identify associations between a large number of clinical covariates, which can

be extracted from the Marketscan medical claims and work data used in this study, and the

likelihood of observing a chronic opioid prescription. While not all pain sufferers are prescribed a

long-term opioid prescription, as has been demonstrated throughout this paper, I assume that the

covariates most frequently observed as correlating with such a long-run opioid prescription are the

covariates that are most likely to select chronic pain patients. Below and in Appendix F I

characterize the common groupings of care that the chronic pain cohort receives. This algorithmic

approach can be contrasted with simpler methods of selecting pain patients based on the presence

of a list of diagnosis codes, such as is described in Tian, Zlateva and Anderson (2013). For my

purposes, generating a chronic pain cohort with high rates of opioid usage and indicators of serious

chronic pain conditions, the algorithmic approach is better-performing. Specifically, selecting based

on broad pain codes (such as the approximately 100 in Tian, Zlateva and Anderson) generates a

large sample of over a million individuals with only moderately elevated opioid prescribing and

fewer indicators of serious chronic pain.

Appendix E.1 Data

The data used to train the machine learning model are extracted from commercial health insurance

claims data: Marketscan covering years 2005-2012.

Appendix E.2 Labels

The outcome variable of interest is the existence of a chronic opioid prescription, encoded as a

binary classifier. I use a custom episode grouper to link related claims across time, and consider a

person to have a chronic opioid prescription if they have a prescription lasting more than 90 days.

Appendix E.3 Features

Covariates (model features) are extracted from claims data records, and indicators of clinical

experience are transformed to a panel data structure with observations at the individual-month

level. Covariates used include sex, 5-year age bins (Age 26-30, etc.), dummy variables for industry
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of employment, and a large panel of clinical variables, including dummy indicators for 3-digit

ICD-9 codes, facility types, and provider types. In total, 1,371 features were included in the

prediction model.

Appendix E.4 Algorithm

I utilize a binary classification machine learning algorithm, gradient boosted decision trees,

implemented in Python by the XGBoost library. The algorithm, which is an ensemble method, fits a

large number of trees sequentially (each tree allowing for a non-linear relationship structure

between covariates) with iterative improvements each time (Friedman, Hastie and Tibshirani, 2009).

The resulting model generates a score at the individual-month level that reflects the

machine-determined probability of a chronic opioid therapy prescription in that month; in a given

month, if an individual has features that are correlated in the broader sample with a chronic opioid

prescription, they will receive a higher score than individuals who do not. I determine an

individual’s overall likelihood of being a chronic pain patient according to their maximum

machine-predicted score over their period in the sample, and I thus select observations into or out of

the sample at the individual level.

Appendix E.5 Cohort Selection

A final sample is constructed from patients who have eligibility for either workers compensation,

short term disability, or both, throughout their time in the sample; this is so as to not bias the work

results. I then take predicted pain scores from the machine learning algorithm, dropping any

enrollees used for training, and augment the scores of employees ever injured enough to miss days

of work under workers’ compensation, replacing their score with a 1 and ensuring inclusion in the

sample. From this score dataset I select the top decile.

The augmentation procedure for workers compensation injured individuals accounts for around

38,000 individuals in the chronic pain patient sample, out of 340,660. I include these individuals

because the nature of workers’ compensation injuries means that they almost always are

accompanied by pain: about 70% of workers injured enough to miss days of work received an

opioid prescription.52 Further, because medical claims directly related to the workers compensation

injury are not observable in detail in the Marketscan databases (the medical claims are paid directly

by workers compensation and costs are only reported in aggregate) I will not reliably be able to

observe the target classifier of having a chronic opioid prescription.

52Examples of injuries severe enough to miss work in my dataset include “slip and fall”, “caught in/between machin-
ery”, “continuous trauma”, “strain or injury by lifting”, “struck/injured by falling or flying object”, etc.
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Appendix E.6 Model results

Table E1 displays the results of a test for whether the pain scores are endogenous to PDMP

introduction; they are not. Table B5, above, also shows that WC claiming behavior is not

endogenous to PDMP introduction, so the addition of individuals injured badly enough on workers

compensation to miss work is also not endogenous to PDMP introduction. Taken together, these

results indicate that even though prescribing behavior and the treatment of chronic pain has

changed throughout the sample period, the method used to construct the pain cohort is

time-invariant enough for selecting a consistent cohort of individuals, and individuals in the chronic

pain sample are not being selected into the sample differently in later years versus earlier years.

Table E1: Endogeneity in Predicted Enrollee Sample (Marketscan)

(1)
Enrollee score in
predictive model

1(PDMP) 8BC -0.000217
(0.000916)

Controls:
Individual Controls Y
Individual FE N
Entry-cohort FE Y
Quarter FE Y
State FE N

Clusters 38
Observations 37,574,510

Notes: This table displays the relationship between the introduction of a PDMP and an enrollee’s
score predicting their likelihood of being a chronic pain patient. Robust standard errors, clustered at
the state level, in parentheses. * ? < 0.10, ** ? < 0.05, *** ? < 0.01

Characteristics of the chronic pain cohort are reported in Table E2. Chronic pain patients are

older, more female, and more likely to be blue-colllar (working in union and hourly employment

rather than non-union or salaried; working in manufacturing rather than finance, insurance, or real

estate).
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Table E2: Characteristics of chronic pain sample (Marketscan)

(1) (2)
Full sample Chronic pain

excluding chronic pain sample
Female 0.399 0.442
Age 41.8 46.0

Age bins:
17-28 0.148 0.056
29-40 0.308 0.233
41-52 0.349 0.419
53-64 0.195 0.292

Geography:
Northeast 0.172 0.171
North Central 0.221 0.252
South 0.351 0.335
West 0.255 0.243
Lives in Metro Area 0.907 0.908

Employment status:
Union 0.155 0.242
Non-union 0.613 0.557
Salaried 0.432 0.356
Hourly 0.334 0.433

Industry:
Oil & Gas Extraction, Mining 0.017 0.006
Manufacturing, Durable Goods 0.265 0.373
Manufacturing, Nondurable Goods 0.136 0.132
Transportation, Communications, Utilities 0.173 0.196
Retail Trade 0.026 0.012
Finance, Insurance, Real Estate 0.232 0.159
Services 0.127 0.076

Individuals 4,603,617 340,660

Notes: Reports means of demographic indicators for individuals in the chronic pain sample (Column
2), compared to individuals in the full sample excluding the chronic pain sample (Column 1).
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Appendix F Grouping and characterizing episodes of care

I characterize the experience of the cohort of chronic pain patients using latent Dirichlet allocation

(LDA) (Blei, Ng and Jordan, 2003). LDA is an unsupervised natural language processing method

that probabilistically models unobserved underlying topics as generating observed collections of

words.

I first segment episodes of care for the chronic pain sample by grouping all the claims that occur

into episodes, which I define as any period of time in which there is at least one claim in each

continuous 3-month period. I extract all codes from each claim of each episode, including all 3-digit

ICD-9 diagnosis codes, major diagnostic category codes, inpatient discharge statuses, CPT

procedure codes, procedure groups, provider types, service categories, places of service, revenue

codes, etc. I combine all episode-associated codes into one “bag of words”, and each “document”

supplied to the algorithm is a collection of all the words (claims) associated with an episode of care.

I implement an LDA model for the identification of 15 topics using the LDA algorithm

implementation in Python’s sklearn, and visualize and interpret the extracted topics using the

pyLDAvis package.53

Topic models such as LDA are models of how latent topics generate observed documents

containing words. Each document is modeled as a probabilistic mixture of topics; each of those latent

topics are associated with distributions of words, and the topic model identifies the latent topics and

their associated word distributions. By applying LDA to patient episodes, I model the patient episode

record (“documents”) comprising claims codes (“words”) as arising from latent health conditions

(“topics”). Thus each patient-episode may have the observed claims generated by one or several

underlying health conditions.

As can be seen in Figures F1–F5, the LDA algorithm easily identifies interpretable episodes of

patient care. It identifies episodes of care relating directly to the treatment of pain conditions (e.g.,

surgery, and outpatient physicial therapy, for musculoskeletal and joint pain); episodes of care that

may have pain as a side effect (e.g., cancer); and unrelated episodes of care that occur at other points

during the patients’ time in the sample. My one-line characterization of the contents of each of the

15 medical topics are reported in Table F1. I take the further step of identifying topics that identify

pain episodes specifically, as well as other types of care of interest, like routine medical care, ER

visits, and other serious medical problems which are not pain conditions but might require opioid

pain management in addition to other treatment (e.g., cancer). I report those in Column (2). As

discussed above in the text, I consider outcomes of interest - overall inpatient and outpatient

spending, and missed work, in each of these kinds of patient episodes, finding in Table F2 that

53The pyLDAvis interactive visualizations of all fifteen groups are viewable on https://angelakilby.com/html/

LDA-pain_patients.html.
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PDMP introduction and opioid prescribing reduction has an observed impact specifically on work

function and overall costs of pain management care for patients experiencing pain episodes, e.g.,

episodes that are characterized by the graphics in Figures F1 and F2.

Table F1: Descriptions of 15 topics identified by LDA topic model

Topic Description Table F2 grouping
1 Vision
2 Inpatient musculoskeletal surgery Chronic pain treatment episodes
3 Female-related mammograms and surgeries
4 Routine office visits Routine medical care
5 Routine female-related Routine medical care
6 Cancer Other serious medical problems
7 Office visits for respiratory infections
8 Outpatient musculoskeletal, back, Chronic pain treatment episodes

and spinal pain treatment
9 Cardiovascular/heart disease Other serious medical problems
10 Post-hospitalization aftercare
11 Labwork, preventative, diagnostics
12 ER visits ER visits
13 Inpatient stay Other serious medical problems
14 Mental health and depression
15 Neurology, sleep
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Figure F1: Topic modeling example: Inpatient musculoskeletal surgery



Figure F2: Topic modeling example: Outpatient musculoskeletal, back, and spinal pain treatment



Figure F3: Topic modeling example: ER visits



Figure F4: Topic modeling example: Routine office visits



Figure F5: Topic modeling example: Cancer



Table F2: Impact of PDMP introduction on outcomes during episodes of care identified by
the LDA algorithm (Marketscan)

(1) (2) (3) (4)
Chronic pain ER visits Routine Other serious

1(PDMP) BC treatment episodes medical care medical problems
log(spending+1) 0.0223∗∗ 0.0139 0.00967 0.0196

(0.00959) (0.0134) (0.0206) (0.0126)

log(days absent + 1) 0.0229∗∗∗ 0.00434 0.00986 0.0202∗∗

(0.00764) (0.0139) (0.0111) (0.00837)
Observations 956,389 478,960 505,714 1,051,176

Notes: Table reports the impact of PDMP introduction on inpatient and outpatient spending and
days absent during periods that the topic modeling algorithm has identified as being episodes
where the patient is being treated for chronic pain. Table F1 reports which topic models are included
in which of the above four categories.

91


	Introduction
	Background
	Data
	Drug Enforcement Administration Automated Reports and Consolidated Orders System
	Marketscan Commercial Claims and Encounters / Health and Productivity Management
	Identification of chronic pain patients and distinct episodes of care

	National Vital Statistics System Multiple Causes of Death Microdata

	Empirical Framework
	Institutional details of Prescription Drug Monitoring Programs

	Empirical Analysis: Policy Successes of PDMPs
	Opioid distribution decreases
	Opioid overdose deaths decline
	Opioid abuse declines

	Empirical Analysis: Consequences of Reduced Opioid Prescribing
	Utilization of opioids for the treatment of pain
	Margins along which opioid prescribing is reduced
	Robustness and specification checks

	Welfare effects of reduced opioid prescribing on patients with chronic pain
	Substitution towards more expensive inpatient and outpatient spending
	Increased absences and reduced labor supply


	Empirical Analysis: Quantifying Welfare Tradeoffs of Reducing Opioid Use
	Distributional concerns
	Overall welfare

	Conclusion
	Tables
	Figures
	Prescription Drug Monitoring Programs
	Robustness of key results to alternate specifications
	Robustness of Two-Way Fixed Effects Estimators
	Selection into sample: Individual and cohort fixed effects
	Selecting the chronic pain cohort
	Data
	Labels
	Features
	Algorithm
	Cohort Selection
	Model results

	Grouping and characterizing episodes of care

